Ritter, J.

Representation Theory and Number Theory in Connection with the Local Langlands Conjecture. - 1st ed. - 1 online resource (282 pages) - Contemporary Mathematics ; v.86 . - Contemporary Mathematics .

Intro -- Contents -- Preface -- Participants -- The irreducible representation of the multiplicative group of a tame division algebra over a local field (following H. Koch and E.-W. Zink). -- Sequences of Eisenstein polynomials and arithmetic in local division algebras. -- Koch's classification of the primitive representations of a Galois group of a local field. -- On the numerical local Langlands conjecture. -- Ramification of Weil representations of local Galois groups. -- Representations of certain group extensions. -- Trace calulations. -- Root numbers - the tame case. -- Representations of locally profinite groups. -- The theorems of Bernstein and Zelevinskii. -- Principal orders and congruence Gauß sums. -- The functional equation є-factors -- Root numbers and the local Langlands conjecture. -- On the exceptional representations of GLN. -- Characters of representations of Dn. -- Matching and formal degrees for division algebras and GLn over a p-adic field. -- Tame representations and base change. -- Gauß sums and supercuspidal representations of GLn. -- Identitiés on degree two gamma factors. -- A conjecture on minimal K-types for GLn over a p-adic field. -- Preuve de la conjecture de Langlands locale numerique pour GL(n). -- References.

9780821876749


Algebraic number theory -- Congresses.
Representations of groups -- Congresses.


Electronic books.

QA241 -- .R44 1989eb

512/.74