TY - BOOK AU - Mitzman,David TI - Integral Bases for Affine Lie Algebras and Their Universal Enveloping Algebras T2 - Contemporary Mathematics SN - 9780821876251 AV - QA252.3 -- .M58 1985eb U1 - 512/.55 PY - 1985/// CY - Providence PB - American Mathematical Society KW - Lie algebras KW - Universal enveloping algebras KW - Electronic books N1 - Intro -- Table of Contents -- 1. Introduction -- 2. Chevalley bases for semisimple and type 1 affine Lie algebras of types A, D, E -- 2.1 The construction of l(A) for A= Al, Dl, El -- 2.2 The construction of l(A) for A = Al(1), Dl(1), El(1) -- 2.3 The structure constants with respect to a Chevalley basis -- 3. Chevalley bases for the remaining semisimple and affine Lie algebras -- 3.1 Notation -- 3.2 The cases Bj (j ≥ 2), Cj (j ≥ 2), F4 -- 3.3 The cases B(1)j (j ≥ 2), C(1)j (j ≥ 2), F(1)4 -- 3.4 The cases A(2)2j-1 (j ≥ 2), D(2)j+1 (j ≥ 2), E( 2)6 -- 3.5 The case A(2)2j (j ≥ 1) -- 3.6 The case G2 -- 3.7 The case G(l)2 -- 3.8 The case D(3)4 -- 3.9 The structure constants with respect to a Chevalley basis -- 4. Integral forms of enveloping algebras of affine Lie algebras -- 4.1 Notation and preliminary lemmas -- 4.2 The integral form Uz -- 4.3 The proof of Theorem 4.2.6 for type 1 affine Lie algebras -- 4.4 The proof of Theorem 4.2.6 for affine Lie algebras of types 2 and 3 -- Appendix -- References UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3112931 ER -