TY - BOOK AU - Devroye,Luc AU - Györfi,Laszlo AU - Lugosi,Gabor TI - A Probabilistic Theory of Pattern Recognition T2 - Stochastic Modelling and Applied Probability Series SN - 9781461207115 AV - QA273.A1-274.9 U1 - 003/.52/015192 PY - 1996/// CY - New York, NY PB - Springer KW - Pattern perception KW - Electronic books N1 - A Probabilistic Theory of Pattern Recognition -- Editor's page -- A Probabilistic Theory of Pattern Recognition -- Copyright -- Preface -- Contents -- 1 Introduction -- 2 The Bayes Error -- 3 Inequalities and Alternate Distance Measures -- 4 Linear Discrimination -- 5 Nearest Neighbor Rules -- 6 Consistency -- 7 Slow Rates of Convergence -- 8 Error Estimation -- 9 The Regular Histogram Rule -- 10 Kernel Rules -- 11 Consistency of the k-Nearest Neighbor Rule -- 12 Vapnik -Chervonenkis Theory -- 13 Combinatorial Aspects of Vapnik -Chervonenkis Theory -- 14 Lower Bounds for Empirical Classifier Selection -- 15 The Maximum Likelihood Principle -- 16 Parametric Classification -- 17 Generalized Linear Discrimination -- 18 Complexity Regularization -- 19 Condensed and Edited Nearest Neighbor Rules -- 20 Tree Classifiers -- 21 Data- Dependent Partitioning -- 22 Splitting the Data -- 23 The Resubstitution Estimate -- 24 Deleted Estimates of the Error Probability -- 25 Automatic Kernel Rules -- 26 Automatic Nearest Neighbor Rules -- 27 Hypercubes and Discrete Spaces -- 28 Epsilon Entropy and Totally Bounded Sets -- 29 Uniform Laws of Large Numbers -- 30 Neural Networks -- 31 Other Error Estimates -- 32 Feature Extraction -- Appendix -- Notation -- References -- Author Index -- Subject Index UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3074637 ER -