TY - BOOK AU - Mancarella,Pierluigi AU - Chicco,Gianfranco TI - Distributed Multi-Generation Systems: Energy Models and Analyses T2 - Energy Science, Engineering and Technology Series SN - 9781617283727 AV - TK1006.M36 2009 U1 - 621.31 PY - 2008/// CY - New York PB - Nova Science Publishers, Incorporated KW - Energy facilities -- Mathematical models KW - Electronic books N1 - Intro -- DISTRIBUTED MULTI-GENERATIONSYSTEMS:ENERGY MODELS AND ANALYSES -- PREFACE -- CONTENTS -- NOTATION -- ACRONYM LIST -- SYMBOLS -- SUBSCRIPTS AND SUPERSCRIPTS -- LIST OF FIGURES -- LIST OF TABLES -- INTRODUCTION -- THE DISTRIBUTED MULTI-GENERATIONFRAMEWORK -- 1.1. RECENT ENERGY SYSTEM EVOLUTIONS -- 1.2. BACKGROUND FRAMEWORKS:DISTRIBUTED ENERGY RESOURCES -- 1.3. BACKGROUND FRAMEWORKS: COGENERATION -- 1.4. FROM COGENERATION TO MULTI-GENERATION -- 1.5. THE DISTRIBUTED MULTI-GENERATION (DMG) PARADIGM -- DISTRIBUTED MULTI-GENERATION SYSTEMS:STRUCTURES AND SCHEMES -- 2.1. MULTI-GENERATION PLANT STRUCTURE -- 2.1.1. Overall block structure -- 2.1.2. Energy vector description -- 2.2. THE CHP BLOCK -- 2.2.1. Equipment and characteristics -- 2.2.2. Prime mover control strategies -- 2.3. THE AGP BLOCK -- 2.3.1. AGP equipment in separate linking mode -- 2.3.2. AGP equipment in bottoming linking mode -- 2.3.3. Other equipment -- 2.4. INTERACTIONS WITH EXTERNAL SYSTEMS -- 2.4.1. External networks -- 2.4.2. Distributed storage -- 2.4.3. Renewable energy sources and hybrid systems -- MULTI-GENERATION COMPONENTS:CHARACTERISTICS AND MODELS -- 3.1. COGENERATION PRIME MOVERS -- 3.1.1. General aspects -- 3.1.2. Internal Combustion Engines -- 3.1.2.1. Cooling and heat recovery systems -- 3.1.2.2. Efficiency and off-design performance of ICEs -- 3.1.3. Microturbines -- 3.1.3.1. Generalities on microturbines -- 3.1.3.2. Off-design characteristics -- 3.1.3.3. Cogeneration applications -- 3.1.3.4. Considerations on single-shaft MTs and comparison with ICE technologies -- 3.1.4. Stirling engines -- 3.2. COMBUSTION HEAT GENERATORS -- 3.2.1. General aspects of heat generation groups -- 3.2.2. Boiler efficiency and losses -- 3.2.3. Partial-load characteristics -- 3.3. COOLING GENERATION PLANT EQUIPMENT -- 3.3.1. Generalities on cooling plants; 3.3.2. Cooling plants characteristics -- 3.3.3. Vapour compression chillers -- 3.3.3.1. Thermodynamic aspects and components -- 3.3.3.2. Refrigerants -- 3.3.3.3. Compressors -- 3.3.3.4. Considerations on reciprocating and screw compressors for cooling plants -- 3.3.3.5. Off-design models -- 3.3.4. Absorption chillers -- 3.3.4.1. General characteristics -- 3.3.4.2. Thermodynamic aspects -- 3.3.4.3. Absorption chiller off-design characteristics -- 3.3.4.4. Temperature constraints for heat sources -- 3.3.4.5. Comparison between absorption chillers and vapour compression electricchillers -- 3.3.5. Adsorption chillers -- 3.3.6. Heat pumps -- 3.3.6.1. Classification of heat pumps -- 3.3.6.2. Thermodynamic aspects of EHPs -- 3.3.6.3. Electric heat pump performance -- 3.3.6.4. The thermal source -- 3.3.6.5. Electric resistance heating -- 3.3.7. Engine-driven chillers -- 3.3.7.1. General aspects -- 3.3.7.2. Engine-driven chiller performance -- 3.3.7.3. Heat recovery -- 3.4. HEAT RECOVERY IN COOLING PLANTS -- 3.4.1. General models for bottoming cycle heat recovery in cooling plants -- 3.4.2. The EHP for heat recovery bottoming cycles -- DISTRIBUTED MULTI-GENERATION PLANNING -- 4.1. PLANNING ISSUES WITHIN THE MULTI-GENERATIONFRAMEWORK -- 4.2. CHARACTERIZATION AND PLANNING OF A COGENERATIONPLANT -- 4.2.1. Load duration curve analysis -- 4.2.2. The cogeneration ratio for generation and load -- 4.2.3. "Unmatched" plant and energy interaction modelling -- 4.2.4. Time-domain load characterization of a cogeneration plant -- 4.2.5. Time-domain production characterization of a cogeneration plant -- 4.3. CHARACTERIZATION AND PLANNING OF AMULTI-GENERATION PLANT -- 4.3.1. The effect of cooling power generation: the trigeneration lambdaanalysis -- 4.3.2. Cooling power generation effect on the cogeneration ratio; 4.3.3. Cooling power generation effect on the load duration curve analysis -- 4.3.4. Heat/cooling power production effect in the AGP: the multi-generationlambda analysis -- 4.3.5. The lambda transforms -- 4.4. PERFORMANCE INDICATORS FORMULTI-GENERATION EQUIPMENT -- 4.4.1. Input-output black-box modelling approach -- 4.4.2. Efficiency indicators for black-box models -- 4.4. PERFORMANCE INDICATORS FORMULTI-GENERATION EQUIPMENT -- 4.4.1. Input-output black-box modelling approach -- 4.4.2. Efficiency indicators for black-box models -- 4.5. HEAT/COOLING GENERATION IMPACT ON THE COGENERATIONSIDE: EXPRESSIONS FOR THE LAMBDA TRANSFORMS -- 4.5.1. Separate cooling/heat generation -- 4.5.2. Bottoming cooling generation -- 4.5.3. Bottoming heat generation -- 4.5.4. The heat recovery from chillers in the AGP -- 4.5.5. An alternative point of view: transformation of the prime movercharacteristics and Λy-transforms -- 4.6. THE LAMBDA ANALYSIS AS A PLANNING TOOL -- 4.6.1. The multi-generation energy system planning process -- 4.6.2. AGP selection resorting to the lambda analysis -- 4.6.3. Suitability of multi-generation solutions to different loadconfigurations -- 4.6.4. Suitability of specific trigeneration solutions to load configurations -- 4.6.4.1. CHP-WARG/WAHP scheme -- 4.6.4.2. CHP-GARG/GAHP and CHP-EDC/EDHP schemes -- 4.6.4.3. CHP-EHP and CHP-CERG schemes -- 4.7. CASE STUDY APPLICATION -- 4.7.1. Description of the trigeneration user -- 4.7.2. The lambda analysis applied to the cooling power generationequipment: results of the lambda transforms -- 4.7.2.1. Case 1: GARG -- 4.7.2.2. Case 2: CERG -- 4.7.2.3. Case 3: WARG -- 4.7.2.4. Case 4: WARG (base-load) + CERG (modulation) -- 4.7.2.5. Case 5: CERG (base-load) + WARG (modulation) -- 4.7.3. Discussion on the prime mover selection -- 4.8. REMARKS ON MULTI-GENERATION PLANNING; ENERGY PERFORMANCE ASSESSMENT:RATIONALES AND INDICATORS -- 5.1. GENERALITIES ON THE METHODOLOGY ADOPTED FOR DMGENERGY ASSESSMENT -- 5.1.1. DMG energy system assessment approaches -- 5.1.2. DMG energy system model with a black-box-based approach -- 5.2. UNIFIED APPROACH TO SINGLE AND MULTIPLE ENERGYVECTOR PRODUCTION -- 5.2.1. Output-to-input first-law performance indicators for equipment andnetworks -- 5.2.2. Evaluation of different types of energy: the need for a common metric -- 5.2.3. Energy chain model for DMG systems -- 5.2.4. Single energy vector assessment for trigeneration cases: the PrimaryEnergy Rate (PER) indicator and the Absolute Trigeneration HeatRate (ATHR) array -- 5.2.5. The Thermal Heat Rate (THR) in thermal-only production -- 5.2.6. The Cooling Heat Rate (CHR) in cooling-only production -- 5.3. BENCHMARK MODELS FOR SEPARATE PRODUCTION OF HEAT,ELECTRICITY AND COOLING POWER -- 5.3.1. Conventional reference model for separate production of electricity:equivalent power plant -- 5.3.2. Conventional reference model for separate production of heat:equivalent boiler -- 5.3.3. Conventional reference model for separate production of coolingpower: equivalent electric chiller -- 5.4. PERFORMANCE EVALUATION CRITERIA FOR CHP SYSTEMS -- 5.4.1. Model for cogeneration of electricity and heat -- 5.4.2. Cogeneration first law efficiency or Energy Utilisation Factor (EUF) -- 5.4.3. "Value-Weighted" Energy Utilisation Factor (EUFvw) -- 5.4.4. CHP incremental indicators -- 5.4.5. Second law-based models -- 5.4.6. Fuel Energy Saving Ratio (FESR) or Primary Energy Saving (PES) -- 5.5. PERFORMANCE EVALUATION CRITERIA FOR CCHP SYSTEMS -- 5.5.1. The evaluation of cooling power through reference electric chillers -- 5.5.2. Trigeneration Energy Utilization Factor (TEUF) -- 5.5.3. Absolute Trigeneration Heat Rate (ATHR) and Overall TrigenerationHeat Rate (OTHR); 5.5.4. Trigeneration Primary Energy Saving (TPES) -- 5.5.5. Incremental Trigeneration Heat Rate (ITHR) -- 5.6. PERFORMANCE EVALUATION OF GENERIC DMG SYSTEMS -- 5.6.1. Primary energy saving as the favourite assessment metric -- 5.6.2. The Poly-generation Primary Energy Saving (PPES) indicator forDMG energy systems and networks -- 5.6.3. Rationales for the selection of the separate production models -- 5.7. REMARKS ON DMG ENERGY PERFORMANCE ASSESSMENTMETHODOLOGIES -- COGENERATION ENERGY PERFORMANCEASSESSMENT APPLICATIONS -- 6.1. ENERGY CHAIN MODEL APPLICATION TO HEATINGGENERATION -- 6.1.1. Comparison between electric heat pumps and boilers -- 6.1.2. Primary energy saving analysis -- 6.1.3. Electric resistance heating -- 6.2. HEAT-AND-ELECTRICITY COGENERATIONASSESSMENT EXAMPLES -- 6.2.1. General consideration on the FESR -- 6.2.1.1. What FESR? -- 6.2.1.2. Primary energy saving break-even analyses -- 6.2.1.3. Some remarks on FESR applications -- 6.2.2. CHP assessment through incremental indices -- 6.3. HEAT AND ELECTRICITY COGENERATION:CHP COUPLED TO EHP -- 6.3.1. Primary energy saving model for a composite CHP-EHP scheme -- 6.3.1.1. Numerical examples -- 6.3.2. Incremental indicators for CHP-EHP assessment -- 6.3.2.1. Numerical applications: performance evaluation of different CHP prime moverscoupled with an EHP -- ENERGY PERFORMANCE ASSESSMENT OFTRIGENERATION ALTERNATIVES -- 7.1. CONSIDERATIONS ON REFERENCE MODELS -- 7.2. COGENERATION OF COOLING AND ELECTRICITY(SEASONAL TRIGENERATION) -- 7.2.1. Primary energy saving break-even conditions -- 7.2.2. Primary energy saving assessment -- 7.2.3. Incremental assessment -- 7.3. TRIGENERATION OF ELECTRICITY, HEAT AND COOLING POWERIN A CHP-WARG SCHEME -- 7.3.1. Trigeneration plant model and energy flows -- 7.3.2. Energy saving break-even conditions -- 7.3.3. Trigeneration primary energy saving assessment; 7.3.4. Further issues related to CHP-chiller coupling UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3020783 ER -