Modelling Flows in Environmental and Civil Engineering.
- 1st ed.
- 1 online resource (163 pages)
- Environmental Science, Engineering and Technology .
- Environmental Science, Engineering and Technology .
Intro -- MODELLING FLOWS IN ENVIRONMENTAL AND CIVIL ENGINEERING -- MODELLING FLOWS IN ENVIRONMENTAL AND CIVIL ENGINEERING -- CONTENTS -- PREFACE -- ABSTRACT -- INTRODUCTION -- Chapter 1 THREE-DIMENSIONAL DRIFT-FLUX MODEL -- 1.1.LOCAL INSTANT FORMULATION OF THE MATHEMATICAL MODEL FOR TWO-PHASE FLOW -- 1.1.1.Laws of Conservation in Fluid Mechanics -- Reynolds Transport Theorems -- General Balance Equation -- Continuity Equation -- Momentum Equation -- Remark on the Integral Form of the Equations -- Constitutive Equations -- Interfacial Balance Equation -- 1.1.2. Local Instant Formulation -- Field Equations -- Constitutive Equations -- Jump Conditions -- 1.1.3. Approaches to Solve Local Instant Formulation -- 1.2. TIME AVERAGING OF THE LOCAL INSTANT FORMULATION -- 1.2.1. Introduction to the Various Methods of Averaging -- Eulerian Time Averaging -- 1.2.2. Eulerian Time Averaging: Mathematical Theory -- Time Domain Analysis and Local Void Fraction -- Definition of Time Average, Phase Average and Weighted Mean Value -- Particular Mean Values -- Fluctuating Component and Mean Values -- Time Average of Derivative -- 1.2.3. Mixture Model Field Equations -- Mixture Continuity Equation -- Diffusion Equation -- Mixture Momentum Conservation Equation -- Field Equations -- 1.2.4. Drift-Flux Model Constitutive Laws -- 1.3. SIMPLIFICATIONS OF THE DRIFT-FLUX MODEL -- 1.3.1. Non Dimensional Form of the Drift-flux Model -- 1.3.2. Homogeneous Flow Model -- Chapter 2 TWO-DIMENSIONAL DRIFT-FLUX MODEL -- 2.1. DIMENSIONAL ANALYSIS AND SIMPLIFICATION -- 2.2 DEPTH-INTEGRATED DRIFT-FLUX MODEL -- 2.2.1. Boundary Condition at the Free-Surface and the Bottom -- General Formulation -- Kinematic Boundary Conditions -- Diffusive Boundary Conditions -- Dynamic Boundary Conditions -- 2.2.2. Definition of the Depth-Average and Important Relations. 2.2.3. Depth-Integration of the Continuity Equation -- 2.2.4. Depth-Integration of the Diffusion Equation -- 2.2.5. Depth-Integration of the Momentum Equations -- 2.2.6.Convective Flux -- Coefficient of Uneven Distribution -- Covariance Correction Term -- 2.2.7. Pressure Distribution -- 2.3. MOMENT EQUATIONS OF THE DRIFT-FLUX MODEL -- 2.3.1. Moment of the Mixture Continuity Equation -- 2.3.2. Moment of the Diffusion Equation -- 2.3.3. Moment of the Momentum Equations -- 2.4. MULTI-LAYER DEPTH-INTEGRATED DRIFT-FLUX MODEL -- 2.4.1. Boundary Condition at the Interfaces Between Layers -- Kinematic Boundary Conditions -- Dynamic Boundary Conditions -- 2.4.2. Depth-Integration of the Continuity Equation over a Layer -- 2.4.3. Depth-Integration of the Diffusion Equation over a Layer -- 2.4.4. Depth-Integration of the Momentum Equation over a Layer -- Chapter 3 ANALYSIS AND APPLICATION OF DEPTH-INTEGRATED DRIFT-FLUX EQUATIONS -- 3.1. SINGLE-PHASE FLOW -- 3.1.1. Particularized Model -- 3.1.2. Friction Correlations -- 3.1.3.Mathematical Properties of the System -- 3.1.4. Application Examples -- Inundation Mapping -- Dam Break Induced Flood Wave and Inundation Flow -- 3.2. AERATED FLOW AND AIR WATER INTERACTIONS -- 3.2.1. Particularized Model -- 3.2.2. Kinematic Constitutive Equation -- 3.2.3. Friction Correlation: Homogeneous Assumption -- 3.2.4. Mathematical Properties of the System -- 3.2.5.Application to Stepped Spillways -- 3.3. SEDIMENT TRANSPORT AND MORPHODYNAMICS -- 3.3.1. Particularized Model -- 3.3.2. Mathematical Properties of the System -- 3.3.3. Application Examples -- Migration of a Trench Due To Suspended Load -- Bed Load and Suspended Load Transport in a Large Reservoir -- 3.4. MOMENT EQUATIONS -- 3.4.1. Particularized model -- 3.4.2. Mathematical Properties of the System -- 3.4.3. Application Examples -- CONCLUSION -- REFERENCES -- INDEX. Blank Page.