Wu, Chih.

Thermodynamics and Heat Powered Cycles : A Cognitive Engineering Approach. - 1st ed. - 1 online resource (677 pages)

Intro -- THERMODYNAMICS AND HEATPOWERED CYCLES:A COGNITIVEENGINEERING APPROACH -- NOTICE TO THE READER -- CONTENTS -- PREFACE -- ACKNOWLEDGEMENTS -- BASIC CONCEPTS -- 1.1. THERMODYNAMICS -- Homework 1.1. Thermodynamics -- 1.2. BASIC LAWS -- Homework 1.2. Basic Laws -- 1.3. WHY STUDY THERMODYNAMICS? -- Homework 1.3. Why Study Thermodynamics? -- 1.4. DIMENSIONS AND UNITS -- Example 1.4.1. -- Example 1.4.2. -- Homework 1.4. Dimensions and Units -- 1.5. SYSTEMS -- Homework 1.5. Systems -- 1.6. PROPERTIES OF A SYSTEM -- 1.6.1. Volume (V) -- 1.6.2. Density (ρ) and Specific Volume (v) -- Example 1.6.1. -- 1.6.3. Pressure (p) -- Example 1.6.3.1. -- Example 1.6.3.2. -- 1.6.4. Temperature (T) -- Example 1.6.4.1. -- 1.6.5. Energy (E) -- 1.6.6. Enthalpy (H) -- 1.6.7. Specific Heat (c, cp and cv) -- 1.6.8. Ratio of the Specific Heats (k) -- 1.6.9. Quality, Dryness and Moisture Content -- Example 1.6.9.1. -- 1.6.10. Entropy (S) -- 1.6.11. Point Function -- Homewok 1.6. Properties -- 1.7. EQUILIBRIUM STATE -- Homework 1.7. Equilibrium State -- 1.8. PROCESSES AND CYCLES -- Homework 1.8. Processes and Cycles -- 1.9. CYCLEPAD -- 1.9.1. Download -- 1.9.2. Installation onto your own PC -- 1.9.3. Contents -- 1.9.4. Modes -- 1.10. SUMMARY -- PROPERTIES OF THERMODYNAMIC SUBSTANCES -- 2.1. THERMODYNAMIC SUBSTANCES -- Homework 2.1. Thermodynamic Substances -- 2.2. PURE SUBSTANCES -- Example 2.2.1. -- Example 2.2.2. -- Example 2.2.3. -- Example 2.2.4. -- Example 2.2.5. -- Example 2.2.6. -- Example 2.2.7. -- Example 2.2.8. -- Example 2.2.9. -- Example 2.2.10. -- Homework 2.2. Pure substances -- 2.3. IDEAL GASES -- Example 2.3.1. -- Example 2.3.2. -- Example 2.3.3. -- Example 2.3.4. -- Example 2.3.5. -- Example 2.3.6. -- Example 2.3.7. -- Homework 2.3. Ideal gases -- 2.4. REAL GASES -- Example 2.4.1. -- Homework 2.4. Real gases -- 2.5. INCOMPRESSIBLE SUBSTANCES. Example 2.5.1. -- Example 2.5.2. -- Example 2.5.3. -- Homework 2.5. Incompressible substances (Liquids and solids) -- 2.6. SUMMARY -- FIRST LAW OF THERMODYNAMICSFOR CLOSED SYSTEMS -- 3.1. INTRODUCTION -- Homework 3.1. Introduction -- 3.2. WORK -- Example 3.2.1. -- Example 3.2.2. -- Example 3.2.3. -- Homework 3.2. Work -- 3.3. HEAT -- Homework 3.3. Heat -- 3.4. FIRST LAW OF THERMODYNAMICS FOR A CLOSED SYSTEM -- Example 3.4.2. -- Homework 3.4. First Law of Thermodynamics for a Closed System -- 3.5. FIRST LAW OF THERMODYNAMICS FOR ACLOSED SYSTEM APPLY TO CYCLES -- Example 3.5.1. -- Homework 3.5. First Law of Thermodynamics for a Closed System Apply toCycles -- 3.6. CLOSED SYSTEM FOR VARIOUS PROCESSES -- 3.6.1. Constant Volume (Isochoric or Isometric) Process -- Homework 3.6.1. Constant Volume -- 3.6.2. Constant Pressure (Isobaric) Process -- Homework 3.6.2. Isobaric Process -- 3.6.3. Constant Temperature (Isothermal) Process -- Homework 3.6.3. Constant Temperature Process -- 3.6.4. Adiabatic Process -- Homework 3.6.4. Adibatic Process -- 3.6.5. Constant Entropy (Isentropic) Process -- Homework 3.6.5. Isentropic Process -- 3.6.6. Polytropic Process -- Homework 3.6.6. Polytropic Process -- 3.6.7. Heating and Cooling Processes -- Homework 3.6.7. Heating and Cooling Process -- 3.6.8. Compression and Expansion Processes -- Homework 3.6.8. Compression and Expansion Processes -- 3.7. MULTI- PROCESS -- Example 3.7.1. -- Example 3.7.2. -- Homework 3.7. Multi-Process -- 3.8. SUMMARY -- FIRST LAW OF THERMODYNAMICSFOR OPEN SYSTEMS -- 4.1. INTRODUCTION -- 4.2. CONSERVATION OF MASS -- 4.2.1. General Case -- 4.2.2. Steady Flow Case -- Example 4.2.1. -- Homework 4.2. Mass Conservation -- 4.3. FIRST LAW OF THERMODYNAMICS -- 4.3.1. General Case -- 4.3.2. Steady Flow -- Homework 4.3. First Law of Thermodynamics -- 4.4. CYCLEPAD OPEN SYSTEM DEVICES. 4.4.1. Heater (Including Boiler, Steam Generator, Superheater, CombustionChamber, Burner, Evaporator, Reheater, Preheater and Open Feed WaterHeater) -- Homework 4.4.1. Heater -- 4.4.2. Cooler (Including Condenser, Intercooler, Precooler and Aftercooler) -- Homework 4.4.2. Cooler -- 4.4.3. Compressor -- Homework 4.4.3. Compressor -- 4.4.4. Turbine -- Homework 4.4.4. Turbine -- 4.4.5. Pump -- Homework 4.4.5. Pump -- 4.4.6. Mixing Chamber -- Homework 4.4.6. Mixing Chamber -- 4.4.7. Splitter -- Homework 4.4.7. Splitter -- 4.4.8. Heat Exchanger -- Homework 4.4.8. Heat Exchanger -- 4.4.9. Throttling Valve -- Homework 4.4.9. Throttling Valve -- 4.4.10. Reactor -- 4.5. OTHER DEVICES (UNABLE TOUSE CYCLEPAD) -- 4.5.1. Nozzle -- 4.5.2. Diffuser -- Homework 4.5. Nozzle and Diffuser -- 4.6. SYSTEMS CONSISTING OF MORE THANONE OPEN-SYSTEM DEVICE -- Example 4.6.1. -- Example 4.6.2. -- Example 4.6.3. -- Homework 4.6. Combination -- 4.7. SUMMARY -- SECOND LAW OF THERMODYNAMICS -- 5.1. INTRODUCTION -- Homework 5.1. Introduction -- 5.2. DEFINITIONS -- 5.2.1. Thermal Reservoirs -- 5.2.2. Heat Engines -- Homework 5.2.2. Heat engines -- 5.2.3. Refrigerators -- Homework 5.2.3. Refrigerator -- 5.2.4. Heat Pumps -- Homework 5.2.4. Heat Pump -- 5.3. SECOND LAW STATEMENTS -- Homework 5.3. Second Law Statements -- 5.4. REVERSIBLE AND IRREVERSIBLE PROCESSES -- Homework 5.2.4. Reversible and Irreversible Processes -- 5.5. CARNOT CYCLE -- Homework 5.5. Carnot Cycle -- 5.5.1. Carnot Heat Pump -- Homework 5.5.1. Carnot Heat Pump and Carnot Refrigerator -- 5.6. CARNOT COROLLARIES -- 5.7. THE THERMODYNAMIC TEMPERATURE SCALE -- 5.8. SUMMARY -- ENTROPY -- 6.1. CLAUSIUS INEQUALITY -- Homework 6.1. Clausius Inequality -- 6.2. ENTROPY AND HEAT -- Homework 6.2. Entropy and Heat -- 6.3. HEAT AND WORK AS AREAS -- Homework 6. 3. Heat and Work as Areas -- 6.4. ENTROPY AND CARNOT CYCLES. 6.5. SECOND LAW OF THERMODYNAMICS FOR CLOSED SYSTEMS -- Homework 6.5. Entropy and Second Law -- 6.6. SECOND LAW OF THERMODYNAMICS FOR OPEN SYSTEMS -- Homework 6. 6. Second Law of Thermodynamics for Open Systems -- 6.7. PROPERTY RELATIONSHIPS -- 6.7.1. Pure Substance -- 6.7.2. Ideal Gas -- 6.7.3. Incompressible Liquid And Solid -- Homework 6.7. Property Relationships -- 6.8. ISENTROPIC PROCESSES -- Example 6.8.1. -- Example 6.8.2. -- Homework 6.8. Isentropic Processes -- 6.9. ISENTROPIC EFFICIENCY -- 6.9.1. Turbine Isentropic Efficiency -- 6.9.2. Compressor Isentropic Efficiency -- 6.9.3. Pump Isentropic Efficiency -- Homework 6.9. Isentropic Efficiency -- Homework 6.10. Entropy Change of Irreversible Processes -- 6.10. ENTROPY CHANGE OF IRREVERSIBLE PROCESSES -- 6.11. THE INCREASE OF ENTROPY PRINCIPLE -- Homework 6.11. The Increase of Entropy Principle -- Example 6.12.1. -- Example 6.12.2. -- Homework 6.12. Second law efficiency and effectiveness of cycles -- 6.12. SECOND LAW EFFICIENCY AND EFFECTIVENESS OF CYCLES -- 6.13. AVAILABLE AND UNAVAILABLE ENERGY -- Homework 6.13. Available and Unavailable Energy -- 6.14. SUMMARY -- EXERGY AND IRREVERSIBILITY -- 7.1. INTRODUCTION -- 7.2. REVERSIBLE AND IRREVERSIBLE WORK -- Example 7.2.1. -- Homework 7.2. Reversible and Irreversible Work -- 7.3. REVERSIBLE WORK OF A CLOSED SYSTEM -- Example 7.3.1. -- Example 7.3.2. -- Homework 7.3. Reversible Work of a Closed System -- 7.4. REVERSIBLE WORK OF AN OPEN SYSTEM -- Hemework 7.4. Reversible Work of an Open System -- 7.5. REVERSIBLE WORK OF AN OPEN SYSTEMIN A STEADY-STATE FLOW PROCESS -- Example 7.5.1. -- Example 7.5.2. -- Homework 7.5. Reversible Work of an Open System in a Steady-State FlowProcess -- 7.6. IRREVERSIBILITY OF A CLOSED SYSTEM -- Example 7.6.1. -- Homework 7.6. Irreversibility of a Closed System -- 7.7. IRREVERSIBILITY OF AN OPEN SYSTEM. Example 7.7.1. -- Example 7.7.2. -- Example 7.7.3. -- Homework 7.7. Irreversibility of an Open System -- 7.8. EXERGY (AVAILABILITY) -- Homework 7.8. Exergy (Availability) -- 7.9. EXERGY OF A HEAT RESERVOIR -- Example 7.9.1. -- Homework 7.9. Exergy of a Heat Reservoir -- 7.10. EXERGY AND EXERGY CHANGE OF A CLOSED SYSTEM -- Example 7.10.1. -- Example 7.10.2. -- Example 7.10.3. -- Homework 7.10. Exergy and Exergy Change of a Closed System -- 7.11. EXERGY OF A FLOW STREAM AND FLOWEXERGY CHANGE OF AN OPEN SYSTEM -- Example 7.11.1. -- Example 7.11.2. -- Homework 7.11. Exergy and Rate of Flow Exergy Change of an Open System -- 7.12. THE DECREASE OF EXERGY PRINCIPLE -- Homework 7.12. The Decrease of Exergy Principle -- 7.13. EXERGY EFFECTIVENESS OF DEVICES -- Example 7.13.1. -- Homework 7.13. Exergy Effectiveness of Devices -- 7.14. EXERGY CYCLE EFFICIENCY -- Example 7.14.1. -- Example 7.14.2. -- Example 7.14.3. -- Homework 7.14. Exergy Cycle Efficiency -- 7.15. SUMMARY -- VAPOR CYCLES -- 8.1. CARNOT VAPOR CYCLE -- Example 8.1.1. -- Homework 8.1. Carnot Vapor Cycle -- 8.2. BASIC RANKINE VAPOR CYCLE -- Example 8.2.1. -- Example 8.2.2. -- Example 8.2.3. -- Homework 8.2. Basic Rankine Cycle -- 8.3. IMPROVEMENTS TO RANKINE CYCLE -- Homework 8.3. Improvements to Rankine Cycle -- 8.4. ACTUAL RANKINE CYCLE -- Example 8.4.1. -- Example 8.4.2. -- Homework 8.4. Actual Rankine Cycle -- 8.5. REHEAT RANKINE CYCLE -- Example 8.5.1. -- Example 8.5.2. -- Homework 8.5. Reheat Rankine Cycle -- 8.6. REGENERATIVE RANKINE CYCLE -- Example 8.6.1. -- Example 8.6.2. -- Example 8.6.3. -- Homework 8.6. Regenerative Rankine Cycle -- 8.7. LOW-TEMPERATURE RANKINE CYCLES -- Homework 8.7. Low-Temperature Rankine Cycles -- 8.8. SOLAR HEAT ENGINES -- Example 8.8.1. -- Example 8.8.2. -- Homework 8.8. Solar Heat Engine -- 8.9. GEOTHERMAL HEAT ENGINES -- Example 8.9.1. -- Example 8.9.2. Example 8.9.3.

9781606926260


Thermodynamics -- Data processing.
Heat engineering -- Data processing.


Electronic books.

TJ265 -- .W827 2007eb

621.402/1