TY - BOOK AU - Low,Jim TI - Rutile: Properties, Synthesis and Applications SN - 9781619422360 AV - TN799.T5 -- .L69 2012eb U1 - 669/.7322 PY - 2012/// CY - New York PB - Nova Science Publishers, Incorporated KW - Rutile KW - Titanium -- Metallurgy KW - Electronic books N1 - Intro -- Contents -- Preface -- Recommended Readings -- Titanium Dioxide and Rutile: -- An Overview and its -- Photocatalytic Activity -- Abstract -- Commentary -- Conclusion -- References -- Phase Stability and -- Transformations in TiO2 -- Abstract -- 1. Overview -- 2. Properties of Anatase, Brookite and Rutile -- 3. Applications of TiO2 Phases -- 4. Synthesis Routes for TiO2 Phases -- 5. Stability of TiO2 Phases -- 5.1. Anatase to Rutile Phase Transformation -- 5.2. Factors Affecting the Stability of Anatase -- 5.2.1. Effect of Temperature on Anatase to Rutile Transformation -- 5.2.2. Effect of Pressure on Anatase to Rutile Transformation -- 5.3. Rutile/Anatase Formation from Brookite -- 5.4. Effects of Dopants on Anatase to Rutile Transformation -- 5.4.1. Cationic Dopants -- 5.4.2. Anionic Dopants -- 5.5. Surface Energy Changes during Phase Transformations of Nanoparticles -- Summary -- References -- Rutile Nanostructures: -- Synthesis, Characterization and Potential -- Application in Photocatalytic Processes -- Abstract -- Introduction -- Preparation and Stoichiometry of Pure and -- Fe-Doped Rutile TiO2 Samples -- Morphology and Microstructure by -- TEM and HRTEM -- Structure Analysis -- Optical Properties of Rutile Nanostructures -- Photocatalytic Activity of Pure and Fe-Doped -- Rutile Nanoparticles -- Conclusions -- Acknowledgments -- References -- The Fabrication of Rutile Nanoparticles and Hollow Microspheres with Mesoporosity -- Abstract -- 1. The Synthesis of Rutile Nanoparticle in Aqueous Solution -- 1.1. Introduction -- 1.2. Preparation of Rutile Nanoparticle -- 1.3. Characterization of Rutile Nanoparticles -- 1.4. Formation Mechanism of Rutile Nanocrystal -- 2. The Transformation Process from Anatase -- Nanoparticle to Nanorutile during Calcination -- 2.1. Introduction -- 2.2. Preparation of Nanoanatase; 2.3. The Transformation Process from Anatase to Rutile -- 2.4. The Rate Competition Determines the Size Distribution and the Diameter of Anatase Nanoparticles during Calcinations -- 2.5. The Microstrain Determines the Rates of the Anatase Growth and the Transformation -- 3. The Fabrication of Rutile Hollow Microspheres -- with Mesoporosity -- 3.1. Introduction -- 3.2. Sample Preparation -- 3.3. XRD -- 3.4. SEM -- 3.5. Specific Surface Area -- 3.6. UV Absorption -- 3.7. The Formation of the Hollow Structure -- Conclusions -- References -- Titanium Dioxide under Ambient Air: Preparation and Photocatalytic Properties of TiO2 Precipitated Aerosols -- Abstract -- 1. Introduction -- 2. Experimental -- 2.1. Tropospheric conditions -- 2.2. Creation of experimental conditions close to tropospheric conditions -- 2.3. Preparation of samples under ambient air -- 2.4. Physical - Chemistry Characteristics of Titania Samples -- 2.5. Pre-starting procedure in high-vacuum set-up -- 3. Results and Discussion -- 3.1. Darkness Processes -- 3.2. Heterogeneous Chemical Processes Induced by Radiation -- Conclusion -- References -- Rutile as Superacid Catalysts: -- Preparation, Morphology and Catalytic Activity -- Abstract -- 1. Introduction -- 2. Solid Acids and Superacidity -- 3. Measurement of Acidity and Surface Acid Sites -- 4. Rutile-Based Superacid Catalysts -- 4.1. Preparative methods -- 4.1.1. Pure Oxides -- 4.1.2. Modified Oxides -- a) Mixed Oxides -- b) Sulfated Oxides -- c) Metal Promotion -- 4.2 Morphology and physical properties -- 4.3. Acidity and Structure -- 4.4 Catalytic Activity -- Conclusions -- References -- The Coordination State of Titanium Atoms at the Surface of Industrial TiO2 Specimens According to the Data of Electronic Spectroscopy of Diffusion Reflection -- Abstract -- Introduction -- 1. Theoretical Foundations of ESDR; 2. Representation of the ESDR-Spectra -- 3. Methods of Separation the ESDR-Spectrum into Components -- 4. The Coordination State of Titanium Atoms in TiO2 -- Conclusion -- References -- Ferromagnetism in Transition Metal -- Doped Rutile TiO2 -- Abstract -- 1. Introduction -- 2. Experimental Section -- 2.1 Experimental details -- 2.2 Co- and Fe-doped rutileTiO2 -- 3. Theoretical Section -- 3.1. The System under Study: Rutile TiO2 Structure -- 3.2. Method of calculation -- 3.3. Theoretical Results -- 3.3.1. Systems with one substitutional TM (Ti15TMO32) -- 3.3.2. Study of the System Ti16O31 (One Oxygen Vacancy in TiO2) -- 3.3.3. Systems with One Substitutional TM and Oxygen Vacancies (Ti15TMO32-() -- 3.3.4. Systems with Two Substitutional TM (Ti14TM2O32) -- 3.3.5. Systems with Two Substitutional TM and Oxygen Vacancies (Ti14TM2O32 -(). -- 3.3.6. Interstitial Impurities -- Conclusions -- Acknowledgments -- References -- Development and Characterization of RuO2-Based Electrodes for Environmental Application -- Abstract -- 1. General Aspects -- 2. Ruthenium Oxide -- 3. Methods for Preparation of RuO2 thin Films for Application in Organic Oxidation -- 4. Application of RuO2-Based Material in Organic -- Oxidation Reaction (OOR) -- 5. Changing the Composition of the Supporting Electrolyte: the use of Chloride Medium -- 6. Electrochemical Photo-Assisted Abatement -- Conclusion and Perspectives for the Future -- References -- Mineral Chemistry and Potential Applications of Natural-Multi-Doped Hydrothermal Rutile from Porphyry -- Copper Deposits -- Abstract -- Introduction -- Origin of Natural Hydrothermal Rutile -- Physical Characteristics of Natural -- Hydrothermal Rutile -- Chemical Composition of Natural Hydrothermal Rutile -- General Uses of Natural Rutile -- Doped TiO2 as a Catalyst: Nature did it First; Applications of Multi-Doped Natural Rutile as a Semiconductor -- Recovery of Rutile as a by-Product from Porphyry -- Copper Deposits -- Conclusions -- Acknowledgments -- References -- Index -- Blank Page -- Blank Page UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=3017871 ER -