TY - BOOK AU - El-Eskandarany,M.Sherif TI - Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy SN - 9780323221283 AV - TN698 PY - 2015/// CY - San Diego PB - Elsevier Science & Technology Books KW - Materials KW - Electronic books N1 - Front Cover -- Mechanical Alloying -- Copyright Page -- Dedication -- Contents -- About the author -- Preface -- Acknowledgment -- 1 Introduction -- 1.1 Advanced materials -- 1.2 Strategies used for fabrication of advanced materials -- 1.3 Mechanically assisted approach -- 1.3.1 Powder metallurgy -- 1.3.2 Ball milling -- 1.3.3 Mechanical alloying -- 1.3.4 Severe plastic deformation -- 1.4 Thermal approach -- 1.4.1 Rapid solidification -- 1.4.1.1 Melt-spinning approach -- 1.4.2 Droplet method: gas/water atomization -- 1.4.3 Thermal plasma processing -- 1.4.4 Vapor deposition -- 1.4.4.1 PVD process -- 1.4.4.2 CVD process -- References -- 2 The history and necessity of mechanical alloying -- 2.1 History of story of mechanical alloying -- 2.2 Fabrication of ODS alloys -- 2.2.1 ODS Ni-based superalloys and Fe-based high-temperature alloys -- 2.2.1.1 INCONEL MA 754 -- 2.2.1.2 INCONEL MA 6000 -- 2.2.1.3 INCONEL MA 956 -- 2.3 Fabrication of other advanced materials -- 2.4 MA, mechanical grinding, mechanical milling, and mechanical disordering -- 2.5 Types of ball mills -- 2.5.1 High-energy ball mills -- 2.5.1.1 Attritor or attrition ball mill -- 2.5.1.2 Shaker mills -- 2.5.1.3 Retsch mixer mills MM 200 and MM 400 -- 2.5.1.4 Super Misuni -- 2.5.1.5 Planetary ball mills -- 2.5.1.6 The uni-ball mill -- 2.5.2 Low-energy tumbling mill -- 2.5.2.1 Tumbler ball mill -- 2.5.2.2 Tumbler rod mill -- 2.6 Mechanism of MA -- 2.6.1 Ball-powder-ball collision -- 2.7 Necessity of MA -- References -- 3 Controlling the powder milling process -- 3.1 Factors affecting mechanical alloying, mechanical disordering, and mechanical milling -- 3.1.1 Types of ball mills -- 3.1.2 Shape of the milling vials -- 3.1.3 Impurities and the milling tools -- 3.1.4 Milling media -- 3.1.5 Milling speed -- 3.1.6 Milling time -- 3.1.7 Milling atmosphere -- 3.1.8 Milling environment; 3.1.9 Ball-to-powder weight ratio -- 3.1.10 Milling temperature -- References -- 4 Ball milling as a powerful nanotechnological tool for fabrication of nanomaterials -- 4.1 Introduction -- 4.1.1 Methods used in the preparation of nanomaterials -- 4.2 Nanocrystalline materials -- 4.2.1 Influence of nanocrystallinity on mechanical properties: strengthening by grain size reduction -- 4.3 Formation of nanocrystalline materials by ball-milling technique -- 4.3.1 Mechanism -- 4.3.1.1 First stage -- 4.3.1.2 Second stage -- 4.3.1.3 Third stage -- 4.3.2 Selected examples -- 4.3.2.1 Formation of nanocrystalline NixMo100−x (x=60 and 85 at.%) -- 4.3.2.2 Formation of nanocrystalline fcc metals -- 4.4 Effect of ball milling on the structure of carbon nanotubes -- 4.5 Pressing and sintering of powder materials -- 4.5.1 Classic powder metallurgy -- 4.6 Consolidation of nanocrystalline powders -- 4.6.1 Approaches used for consolidation of the ball-milled powders -- 4.7 SPS for consolidation of ball-milled nanocrystalline powders -- 4.7.1 Components and system configurations of SPS system -- 4.7.2 Powder specimen filling procedure -- 4.7.3 Procedure -- 4.7.4 Mechanism -- References -- 5 Mechanically induced solid state carbonization -- 5.1 Introduction -- 5.2 Preparation-challenges and difficulties -- 5.3 Fabrication of nanocrystalline TiC by mechanical alloying method -- 5.4 Synthesizing and properties of mechanically solid state reacted TiC powders -- 5.4.1 Synthesizing of Ti55C45 nanopowder particles -- 5.4.2 Consolidation of ball-milled Ti55C45 nanopowder particles -- 5.4.3 Mechanical properties of consolidated Ti55C45 -- 5.4.3.1 Microhardness -- 5.4.3.2 Elastic moduli -- 5.5 Other carbides produced by MA -- 5.5.1 Fabrication of β-SiC powders -- 5.5.2 Fabrication of nanocrystalline WC powders -- 5.5.3 Fabrication of nanocrystalline ZrC powders -- References; 6 Mechanically induced solid state reduction -- 6.1 Introduction -- 6.2 Reduction of Cu2O with Ti by room temperature rod milling -- 6.3 Properties of rod-milled powders -- 6.3.1 Structural changes with the milling time -- 6.3.2 Metallography -- 6.3.3 DTA measurements -- 6.4 Mechanism of MSSR -- 6.5 Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractory materials by MSSR method -- 6.5.1 Properties of ball-milled powders -- 6.5.1.1 Structural changes with the milling time -- 6.5.1.2 Temperature change with the milling time -- 6.5.1.3 Hardness, toughness, and elastic moduli of consolidated WC and WC/MgO -- References -- 7 Fabrication of nanocomposite materials -- 7.1 Introduction and background -- 7.1.1 Nanocomposites -- 7.1.2 Metal-matrix nanocomposites -- 7.2 Fabrication methods of particulate MMNCs -- 7.2.1 SiC/Al MMNCs -- 7.2.2 Fabrication of SiCp/Al MMNCs by mechanical solid state mixing -- 7.2.2.1 Properties of mechanically solid state fabricated SiCp/Al nanocomposites -- 7.2.2.2 Mechanism of fabrication -- 7.2.2.2.1 Formation of agglomerates coarse composite SiCp/Al powder particles -- 7.2.2.2.2 Disintegration of the agglomerates composite SiCp/Al powder particles -- 7.2.2.2.3 Formation of nanocomposite SiCp/Al powder particles -- 7.2.2.2.4 Consolidation of nanocomposite SiCp/Al powder particles -- 7.3 WC-based nanocomposites -- 7.3.1 WC/Al2O3 nanocomposite -- 7.3.2 WC-5Co-1Cr-3MgO-0.7VC-0.3Cr3C2 nanocomposite -- 7.4 Fabrication of metal-matrix/CNT composites by mechanical alloying -- References -- 8 Reactive ball milling for fabrication of metal nitride nanocrystalline powders -- 8.1 Metal nitrides -- 8.2 Fabrication of nanocrystalline TiN by reactive ball milling -- 8.3 Properties of reacted ball-milled powders -- 8.3.1 Structural changes with the milling time -- 8.3.2 Morphology -- 8.4 Mechanism of fabrication; 8.4.1 RBM technique for preparing TiN powders -- 8.4.1.1 The early stage of RBM -- 8.4.1.2 The second stage of RBM -- 8.4.1.3 The third stage of RBM -- 8.4.1.4 The fourth stage of RBM -- 8.5 Other nitrides produced by RBM -- 8.6 RBM for synthesis of boron nitride nanotubes -- References -- 9 Mechanically induced gas-solid reaction for synthesizing of hydrogen storage metal hydrides -- 9.1 Introduction -- 9.1.1 The hydrogen economy -- 9.1.1.1 Characteristics and properties of hydrogen fuel -- 9.1.2 Hydrogen storage -- 9.1.2.1 Gaseous storage method -- 9.1.2.2 Liquid storage method -- 9.1.2.3 Solid-state storage method: metal hydrides -- 9.2 Magnesium hydride as an example of hydrogen storage materials -- 9.2.1 Synthesizing and preparations -- 9.2.2 Structural changes upon RBM time -- 9.2.3 Thermal stability -- 9.2.4 Hydrogenation/dehydrogenation properties -- References -- 10 Mechanically induced solid-state amorphization -- 10.1 Introduction -- 10.2 Fabrication of amorphous alloys by mechanical alloying process -- 10.3 Crystal-to-glass transition -- 10.3.1 The metastable phase diagram -- 10.4 Mechanism of amorphization by MA process -- 10.4.1 Structural changes with the milling time -- 10.4.1.1 X-ray analysis -- 10.4.1.2 TEM observations -- 10.4.2 Morphology and metallography changes with the milling time -- 10.4.3 Thermal stability -- 10.4.3.1 Amorphization process -- 10.4.3.2 Crystallization process -- 10.4.3.3 Mechanism -- 10.4.3.3.1 Amorphization via TASSA process: the early stage of milling -- 10.4.3.3.2 The intermediate stage of milling: the role of amorphization via TASSA and MDSSA processes -- 10.4.3.3.3 The final stage of milling: the role of amorphization via MDSSA process -- 10.5 The glass-forming range -- 10.6 Amorphization via MA when ΔHfor=zero: mechanical solid-state amorphization of Fe50W50 binary system; 10.6.1 Structural changes with the milling time -- 10.6.2 Magnetic studies -- 10.6.3 Thermal stability -- 10.6.4 Mechanism -- 10.6.4.1 The stage of composite Fe-W powder particles formation -- 10.6.4.2 The stage of formation of Fe-W solid solution -- 10.6.4.3 The stage of amorphous Fe-W formation -- 10.7 Special systems and applications -- 10.7.1 Amorphous austenitic stainless steel -- 10.7.2 Fabrication of amorphous Fe52Nb48 special steel -- 10.7.3 Fe-Zr-B system -- 10.8 Difference between MA and MD in the amorphization reaction of Al50Ta50 in a rod mill -- 10.8.1 Background -- 10.8.2 Procedure -- 10.8.3 Structural changes with milling time -- 10.8.4 Morphological changes with milling time -- 10.8.5 Thermal stability -- 10.8.6 Mechanism of formation of amorphous Al50Ta50 via MD method -- 10.9 Mechanically induced cyclic crystalline-amorphous transformations during MA -- 10.9.1 Co-Ti binary system -- 10.9.1.1 Structural changes with the milling time -- 10.9.1.2 Thermal stability -- 10.9.2 Al-Zr binary system -- 10.9.2.1 Structural changes with the milling time -- 10.9.2.2 Thermal stability -- 10.9.3 Mechanism of amorphous-crystalline-amorphous cyclic phase transformations during ball milling -- 10.10 Consolidation of multicomponent metallic glassy alloy powders into full-dense bulk materials -- 10.10.1 Fabrication and consolidation of multicomponent Zr52Al6Ni8Cu14W20 metallic glassy alloy powders -- 10.10.1.1 Structural change -- 10.10.1.2 Thermal stability -- 10.10.1.3 Consolidation -- References -- 11 Utilization of mechanically alloyed powders for surface protective coating -- 11.1 Introduction -- 11.2 Thermal spraying -- 11.2.1 Combustion-based processes -- 11.2.1.1 High velocity oxygen thermal spraying -- 11.2.1.1.1 Utilization of ball-milled powders as feedstock materials for HVOF; HVOF reactive spraying of mechanically alloyed Ni-Ti-C powders UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=2053976 ER -