Sheikholeslami, Mohsen.

Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method. - 1st ed. - 1 online resource (237 pages)

Front Cover -- Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method -- Copyright -- Contents -- Nomenclature -- Preface -- Chapter 1: Control volume finite element method (CVFEM) -- 1.1. Introduction -- 1.2. Discretization: Grid, Mesh, and Cloud -- 1.2.1. Grid -- 1.2.2. Mesh -- 1.2.3. Cloud -- 1.3. Element and interpolation shape functions -- 1.4. Region of support and control volume -- 1.5. Discretization and solution -- 1.5.1. Steady-State Advection-Diffusion with Source Terms -- 1.5.2. Implementation of Source Terms and Boundary Conditions -- 1.5.3. Unsteady Advection-Diffusion with Source Terms -- References -- Chapter 2: CVFEM stream function-vorticity solution -- 2.1. CVFEM Stream Function-Vorticity Solution for a Lid-Driven Cavity Flow -- 2.1.1. Definition of the Problem and Governing Equation -- 2.1.2. The CVFEM Discretization of the Stream Function Equation -- 2.1.2.1. Diffusion contributions -- 2.1.2.2. Source terms -- 2.1.2.3. Boundary conditions -- 2.1.3. The CVFEM Discretization of the Vorticity Equation -- 2.1.3.1. Diffusion contributions -- 2.1.3.2. Advection coefficients -- 2.1.3.3. Boundary conditions -- 2.1.4. Calculating the Nodal Velocity Field -- 2.1.5. Results -- 2.2. CVFEM stream function-vorticity solution for natural convection -- 2.2.1. Definition of the Problem and Governing Equation -- 2.2.2. Effect of Active Parameters -- References -- Chapter 3: Nanofluid flow and heat transfer in an enclosure -- 3.1. Introduction -- 3.2. Nanofluid -- 3.2.1. Definition of Nanofluid -- 3.2.2. Model Description -- 3.2.3. Conservation Equations -- 3.2.3.1. Single-phase model -- 3.2.3.2. Two-phase model -- 3.2.3.2.1. Continuity equation -- 3.2.3.2.2. Nanoparticle continuity equation -- 3.2.3.2.3. Momentum equation -- 3.2.3.2.4. Energy equation -- 3.2.4. Physical Properties of Nanofluids in a Single-Phase Model. 3.2.4.1. Density -- 3.2.4.2. Specific heat capacity -- 3.2.4.3. Thermal expansion coefficient -- 3.2.4.4. Electrical conductivity -- 3.2.4.5. Dynamic viscosity -- 3.2.4.6. Thermal conductivity -- 3.3. Simulation of nanofluid in vorticity stream function form -- 3.3.1. Mathematical Modeling of a Single-Phase Model -- 3.3.1.1. Natural convection -- 3.3.1.2. Force convection -- 3.3.1.3. Mixed convection -- 3.3.2. CVFEM for Nanofluid Flow and Heat Transfer (Single-Phase Model) -- 3.3.2.1. Natural convection heat transfer in a nanofluid-filled, inclined, L-shaped enclosure -- 3.3.2.1.1. Problem definition -- 3.3.2.1.2. Effect of active parameters -- 3.3.2.2. Natural convection heat transfer in a nanofluid-filled, semiannulus enclosure -- 3.3.2.2.1. Problem definition -- 3.3.2.2.2. Effect of active parameters -- 3.3.3. Two-Phase Model -- 3.3.3.1. Natural convection -- 3.3.3.2. Force convection -- 3.3.3.3. Mixed convection -- 3.3.4. CVFEM for Nanofluid Flow and Heat Transfer (Two-Phase Model) -- 3.3.4.1. Two-phase simulation of nanofluid flow and heat transfer using heatline analysis -- 3.3.4.1.1. Problem definition -- 3.3.4.1.2. Effect of active parameters -- 3.3.4.2. Thermal management for free convection of a nanofluid using a two-phase model -- 3.3.4.2.1. Problem definition -- 3.3.4.2.2. Effect of active parameters -- References -- Chapter 4: Flow heat transfer in the presence of a magnetic field -- 4.1. Introduction -- 4.2. MHD Nanofluid Flow and Heat Transfer -- 4.2.1. Mathematical Modeling for a Single-Phase Model -- 4.2.1.1. Natural convection -- 4.2.1.2. Mixed convection -- 4.2.2. Mathematical Modeling for a Two-Phase Model -- 4.2.2.1. Natural convection -- 4.2.2.2. Mixed convection -- 4.2.3. Application of the CVFEM for MHD Nanofluid Flow and Heat Transfer. 4.2.3.1. Effects of MHD on copper-water nanofluid flow and heat transfer in an enclosure with an inclined elliptic hot cy... -- 4.2.3.1.1. Problem definition -- 4.2.3.1.2. Effects of active parameters -- 4.2.3.2. Natural convection heat transfer in a cavity with a sinusoidal wall filled with CuO-water nanofluid in the prese... -- 4.2.3.2.1. Problem definition -- 4.2.3.2.2. Effects of active parameters -- 4.2.3.3. MHD effect on natural convection heat transfer in an inclined, L-shaped enclosure -- 4.2.3.3.1. Problem definition -- 4.2.3.3.2. Effects of active parameters -- 4.2.3.4. Heat flux boundary condition for a nanofluid-filled enclosure in the presence of a magnetic field -- 4.2.3.4.1. Problem definition -- 4.2.3.4.2. Effects of active parameters -- 4.2.3.5. Natural convection of nanofluids in an enclosure between a circular and a sinusoidal cylinder in the presence of... -- 4.2.3.5.1. Problem definition -- 4.2.3.5.2. Effects of active parameters -- 4.2.3.6. Effect of a magnetic field on natural convection in an inclined half-annulus enclosure filled with a copper-wate... -- 4.2.3.6.1. Problem definition -- 4.2.3.6.2. Effects of active parameters -- 4.2.3.7. MHD free convection of an aluminum oxide-water nanofluid considering thermophoresis and Brownian motion effects -- 4.2.3.7.1. Problem definition -- 4.2.3.7.2. Effects of active parameters -- 4.3. Combined Effects of Ferrohydrodynamics and MHD -- 4.3.1. Mathematical Modeling for a Single-Phase Model -- 4.3.1.1. Natural convection -- 4.3.1.2. Mixed convection -- 4.3.2. Mathematical Modeling for a Two-Phase Model -- 4.3.2.1. Natural convection -- 4.3.2.2. Mixed convection -- 4.3.3. Application of CVFEM for the Combined Effects of FHD and MHD -- 4.3.3.1. Combined effects of FHD and MHD in a semiannulus enclosure with a sinusoidal hot wall -- 4.3.3.1.1. Problem definition. 4.3.3.1.2. Effects of active parameters -- 4.3.3.2. Combined effects of FHD and MHD when considering thermal radiation -- 4.3.3.2.1. Problem definition -- 4.3.3.2.2. Effects of active parameters -- 4.3.3.3. Effect of a nonuniform magnetic field on ferrofluid flow and convective heat transfer in a semiannulus enclosure -- 4.3.3.3.1. Problem definition -- 4.3.3.3.2. Effects of active parameters -- References -- Chapter 5: Flow and heat transfer in porous media -- 5.1. Introduction -- 5.2. Governing equations for flow and heat transfer in porous media -- 5.3. Application of the CVFEM for Magnetohydrodynamic nanofluid flow and heat transfer -- 5.3.1. Modeling Free Convection Between the Inclined Hot Roof of a Basement and a Cold Environment -- 5.3.1.1. Problem definition -- 5.3.1.2. Effects of active parameters -- 5.3.2. Modeling Fluid Flow due to Convective Heat Transfer from a Hot Pipe Buried in Soil -- 5.3.2.1. Problem definition -- 5.3.2.2. Effects of active parameters -- 5.3.3. Natural Convection in an Inclined, L-Shaped, Porous Enclosure -- 5.3.3.1. Problem definition -- 5.3.3.2. Effects of active parameters -- References -- Appendix: A CVFEM code for lid driven cavity -- Index.

Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems), hydro-magnetic techniques in materials and bioengineering, and convective flow in fluid-saturated porous media. The topics are of practical interest to engineering, geothermal science, and medical and biomedical sciences. Introduces a detailed explanation of Control Volume Finite Element Method (CVFEM) to provide for a complete understanding of the fundamentals Demonstrates applications of this method in various fields, such as nanofluid flow and heat transfer, MHD, FHD, and porous media Offers complete familiarity with the governing equations in which nanofluid is used as a working fluid Discusses the governing equations of MHD and FHD Provides a number of extensive examples throughout the book Bonus appendix with sample computer code.

9780081003619


Finite element method.
Fluid dynamics -- Mathematical models.
Heat -- Transmission -- Mathematical models.


Electronic books.

TA347.F5 -- .K363 2015eb

620.00151825