Composite Structures of Steel and Concrete : Beams, Slabs, Columns and Frames for Buildings.
- 4th ed.
- 1 online resource (288 pages)
Cover -- Title Page -- Copyright -- Contents -- Preface -- Symbols, Terminology and Units -- Chapter 1 Introduction -- 1.1 Composite beams and slabs -- 1.2 Composite columns and frames -- 1.3 Design philosophy and the Eurocodes -- 1.3.1 Background -- 1.3.2 Limit state design philosophy -- 1.3.2.1 Basis of design, and actions -- 1.3.2.2 Resistances -- 1.3.2.3 Combinations of actions -- 1.3.2.4 Comments on limit state design philosophy -- 1.4 Properties of materials -- 1.4.1 Concrete -- 1.4.2 Reinforcing steel -- 1.4.3 Structural steel -- 1.4.4 Profiled steel sheeting -- 1.4.5 Shear connectors -- 1.5 Direct actions (loading) -- 1.6 Methods of analysis and design -- 1.6.1 Typical analyses -- 1.6.1.1 Longitudinal shear -- 1.6.1.2 Longitudinal slip -- 1.6.1.3 Deflections -- 1.6.1.4 Vertical shear -- 1.6.1.5 Buckling of flanges and webs of beams -- 1.6.1.6 Crack‐width control -- 1.6.1.7 Continuous beams -- 1.6.1.8 Columns -- 1.6.1.9 Framed structures for buildings -- 1.6.1.10 Structural fire design -- 1.6.2 Non‐linear global analysis -- Chapter 2 Shear Connection -- 2.1 Introduction -- 2.2 Simply‐supported beam of rectangular cross‐section -- 2.2.1 No shear connection -- 2.2.2 Full interaction -- 2.3 Uplift -- 2.4 Methods of shear connection -- 2.4.1 Bond -- 2.4.2 Shear connectors -- 2.4.2.1 Headed stud connectors -- 2.4.2.2 Other types of connector -- 2.4.2.3 Perforated strips with concrete dowels and closed holes -- 2.4.2.4 Perforated strips with open‐top holes -- 2.4.3 Shear connection for profiled steel sheeting -- 2.5 Properties of shear connectors -- 2.5.1 Stud connectors used with profiled steel sheeting -- 2.5.1.1 Sheeting with ribs transverse to the beam -- 2.5.1.2 Sheeting with ribs parallel to the beam -- 2.5.2 Stud connectors in a 'lying' position -- 2.5.3 Example: stud connectors in a 'lying' position -- 2.6 Partial interaction. 2.7 Effect of degree of shear connection on stresses and deflections -- 2.8 Longitudinal shear in composite slabs -- 2.8.1 The shear‐bond test -- 2.8.2 Design by the m-k method -- 2.8.3 Defects of the m-k method -- Chapter 3 Simply‐supported Composite Slabs and Beams -- 3.1 Introduction -- 3.2 Example: layout, materials and loadings -- 3.2.1 Properties of concrete -- 3.2.2 Properties of other materials -- 3.2.3 Resistance of the shear connectors -- 3.2.4 Permanent actions -- 3.2.5 Variable actions -- 3.3 Composite floor slabs -- 3.3.1 Resistance of composite slabs to sagging bending -- 3.3.2 Resistance of composite slabs to longitudinal shear by the partial‐interaction method -- 3.3.2.1 Testing for the partial‐interaction method -- 3.3.2.2 Determination of the mean ultimate shear strength, τu -- 3.3.2.3 Partial‐interaction design for longitudinal shear -- 3.3.3 Resistance of composite slabs to vertical shear -- 3.3.4 Punching shear -- 3.3.5 Bending moments from concentrated point and line loads -- 3.3.6 Serviceability limit states for composite slabs -- 3.3.6.1 Cracking of concrete -- 3.3.6.2 Deflection -- 3.4 Example: composite slab -- 3.4.1 Profiled steel sheeting as formwork -- 3.4.1.1 Flexure and vertical shear -- 3.4.1.2 Deflection -- 3.4.2 Composite slab - flexure and vertical shear -- 3.4.3 Composite slab - longitudinal shear -- 3.4.3.1 Partial‐interaction method -- 3.4.4 Local effects of point load -- 3.4.4.1 Punching shear -- 3.4.4.2 Local bending -- 3.4.5 Composite slab - serviceability -- 3.4.5.1 Cracking of concrete above supporting beams -- 3.4.5.2 Deflection -- 3.4.6 Example: composite slab for a shallow floor using deep decking -- 3.4.7 Comments on the designs of the composite slab -- 3.5 Composite beams - sagging bending and vertical shear -- 3.5.1 Effective cross‐section -- 3.5.2 Classification of steel elements in compression. 3.5.3 Resistance to sagging bending -- 3.5.3.1 Beams with cross‐sections in Class 1 or 2 -- 3.5.3.2 Non‐linear and elastic resistances to bending of beams -- 3.5.3.3 Example: non‐linear resistance to sagging bending -- 3.5.3.4 Beams with cross‐sections in Class 3 or 4 -- 3.5.4 Resistance to vertical shear -- 3.5.5 Resistance of beams to bending combined with axial force -- 3.6 Composite beams - longitudinal shear -- 3.6.1 Critical lengths and cross‐sections -- 3.6.2 Non‐ductile, ductile and super‐ductile stud shear connectors -- 3.6.3 Transverse reinforcement -- 3.6.3.1 Design rules for transverse reinforcement in solid slabs -- 3.6.3.2 Transverse reinforcement in composite slabs -- 3.6.4 Detailing rules -- 3.7 Stresses, deflections and cracking in service -- 3.7.1 Elastic analysis of composite sections in sagging bending -- 3.7.2 The use of limiting span‐to‐depth ratios -- 3.8 Effects of shrinkage of concrete and of temperature -- 3.9 Vibration of composite floor structures -- 3.9.1 Prediction of fundamental natural frequency -- 3.9.2 Response of a composite floor to pedestrian traffic -- 3.9.2.1 Modal mass -- 3.9.2.2 Acceleration of the floor -- 3.10 Hollow‐core and solid precast floor slabs -- 3.10.1 Joints, longitudinal shear and transverse reinforcement -- 3.10.2 Design of composite beams that support precast slabs -- 3.10.2.1 Stability during construction -- 3.10.2.2 Resistance of composite beam to bending -- 3.11 Example: simply‐supported composite beam -- 3.11.1 Composite beam - full‐interaction flexure and vertical shear -- 3.11.1.1 Full shear connection -- 3.11.1.2 Vertical shear -- 3.11.1.3 Buckling -- 3.11.2 Composite beam - partial shear connection, non‐ductile connectors and transverse reinforcement -- 3.11.2.1 Number and spacing of stud shear connectors -- 3.11.2.2 Design with non‐ductile shear connectors. 3.11.2.3 Transverse reinforcement -- 3.11.3 Composite beam - deflection and vibration -- 3.11.3.1 Deflection -- 3.11.3.2 Vibration -- 3.12 Shallow floor construction -- 3.13 Example: composite beam for a shallow floor using deep decking -- 3.14 Composite beams with large web openings -- Chapter 4 Continuous Beams and Slabs, and Beams in Frames -- 4.1 Types of global analysis and of beam‐to‐column joint -- 4.2 Hogging moment regions of continuous composite beams -- 4.2.1 Resistance to bending -- 4.2.1.1 Effective flange width, and classification of cross‐sections -- 4.2.1.2 Plastic moment of resistance in hogging bending -- 4.2.1.3 Elastic moment of resistance in hogging bending -- 4.2.1.4 Example: elastic resistance to hogging bending -- 4.2.2 Vertical shear, and moment‐shear interaction -- 4.2.3 Longitudinal shear -- 4.2.4 Lateral buckling -- 4.2.4.1 Elastic critical moment -- 4.2.4.2 Buckling moment -- 4.2.4.3 Use of bracing -- 4.2.4.4 Exemption from check on buckling -- 4.2.5 Cracking of concrete -- 4.2.5.1 No control of crack width -- 4.2.5.2 Control of restraint‐induced cracking -- 4.2.5.3 Control of load‐induced cracking -- 4.3 Global analysis of continuous beams -- 4.3.1 General -- 4.3.2 Elastic analysis -- 4.3.2.1 Redistribution of moments in continuous beams -- 4.3.2.2 Example: redistribution of moments -- 4.3.2.3 Corrections for cracking and yielding -- 4.3.3 Rigid‐plastic analysis -- 4.4 Stresses and deflections in continuous beams -- 4.5 Design strategies for continuous beams -- 4.6 Example: continuous composite beam -- 4.6.1 Data -- 4.6.2 Flexure and vertical shear -- 4.6.2.1 Effective width and minimum reinforcement at the internal support -- 4.6.2.2 Classification of cross‐sections -- 4.6.2.3 Vertical shear -- 4.6.2.4 Bending moments -- 4.6.3 Lateral buckling -- 4.6.4 Shear connection and transverse reinforcement. 4.6.5 Check on deflections -- 4.6.6 Control of cracking -- 4.7 Continuous composite slabs -- Chapter 5 Composite Columns and Frames -- 5.1 Introduction -- 5.2 Composite columns -- 5.3 Beam‐to‐column joints -- 5.3.1 Properties of joints -- 5.3.1.1 Resistance of an end‐plate joint -- 5.3.1.2 Moment‐rotation curve for an end‐plate joint, and stiffness coefficients -- 5.3.1.3 Stiffness in tension -- 5.3.1.4 Elastic stiffness of the joint -- 5.3.2 Classification of joints -- 5.4 Design of non‐sway composite frames -- 5.4.1 Imperfections -- 5.4.2 Elastic stiffnesses of members -- 5.4.3 Methods of global analysis -- 5.4.4 First‐order global analysis of braced frames -- 5.4.4.1 Actions -- 5.4.4.2 Eccentricity of loading, for columns -- 5.4.4.3 Elastic global analysis -- 5.4.4.4 Rigid‐plastic global analysis -- 5.4.5 Outline sequence for design of a composite braced frame -- 5.4.5.1 Ultimate limit states -- 5.4.5.2 Design for serviceability limit states -- 5.5 Example: composite frame -- 5.5.1 Data -- 5.5.2 Design action effects and load arrangements -- 5.6 Simplified design method of EN 1994‐1‐1, for columns -- 5.6.1 Introduction -- 5.6.2 Detailing rules, and resistance to fire -- 5.6.3 Properties of column lengths -- 5.6.3.1 Relative slenderness -- 5.6.4 Resistance of a cross‐section to combined compression and uniaxial bending -- 5.6.5 Verification of a column length -- 5.6.5.1 Design action effects for uniaxial bending -- 5.6.5.2 Biaxial bending -- 5.6.6 Transverse and longitudinal shear -- 5.6.7 Concrete‐filled steel tubes -- 5.7 Example (continued): external column -- 5.7.1 Action effects -- 5.7.2 Properties of the cross‐section, and y‐axis slenderness -- 5.7.3 Resistance of the column length, for major‐axis bending -- 5.7.4 Resistance of the column length, for minor‐axis bending -- 5.7.4.1 Interaction diagram for minor‐axis bending. 5.7.4.2 Biaxial bending.