Heimann, Robert B.
Bioceramic Coatings for Medical Implants : Trends and Techniques.
- 1st ed.
- 1 online resource (492 pages)
Cover -- Contents -- Preface -- Glossary -- Chapter 1 Bioceramics - A Historical Perspective -- 1.1 Alumina -- 1.2 Zirconia -- 1.3 Calcium Phosphates -- References -- Chapter 2 Socio-Economic Aspects and Scope of Bioceramic Materials and Biomedical Implants -- 2.1 Types of Biomaterial -- 2.2 The Growing Global and Regional Markets for Biomedical Implants -- 2.2.1 A Worldwide Need for Implants -- 2.2.2 Market Projections and Forecasts for Biomaterials and Biomedical Implants -- 2.2.2.1 Biomaterials -- 2.2.2.2 Large-Joint Reconstructive Implants (Hip and Knee) -- 2.2.2.3 Small Joints and Extremities Implants -- 2.2.2.4 Spinal Implants -- 2.2.2.5 Dental Implants -- 2.3 Role of Bioceramic Coatings in Arthroplasty -- 2.4 Ceramic Femoral Ball Heads -- 2.4.1 Mechanical and Functional Properties -- 2.4.2 Manufacturing of Ceramic Femoral Ball Heads -- 2.4.3 Discolouration of Zirconia by Ionising Radiation -- References -- Chapter 3 Fundamentals of Interaction of Bioceramics and Living Matter -- 3.1 Principle of Biocompatibility -- 3.2 Hierarchical Structure of Bone and Teeth -- 3.2.1 Bone Structure -- 3.2.2 Tooth Structure -- 3.3 Bioceramic/Bone Interface -- 3.3.1 Elasticity Mismatch -- 3.3.2 Interfacial Loosening -- 3.4 Basic Aspects of Biomineralisation -- 3.5 Interaction at a Cellular Level -- 3.6 Interaction at a Tissue Level -- 3.7 Advantages of Hydroxyapatite and Bioglass Coatings -- 3.8 The Promise of Cytokines -- References -- Chapter 4 Structure and Properties of Bioceramics Used in Orthopaedic and Dental Implants -- 4.1 Bioinert Ceramics -- 4.1.1 Alumina -- 4.1.2 Stabilised Zirconia -- 4.1.2.1 Transformation Toughening of Zirconia Ceramics -- 4.1.2.2 Mechanical Properties of Zirconia -- 4.1.2.3 Biocompatibility and Hydrolytic Stability of Zirconia -- 4.2 Bioactive Ceramics -- 4.2.1 Surface-Active Bioglasses -- 4.2.2 Hydroxyapatite. 4.2.3 Transition Metal-Substituted Calcium Orthophosphates -- 4.2.4 Resorbable Calcium Orthophosphates -- 4.2.4.1 Tricalcium Phosphates -- 4.2.4.2 Tetracalcium Phosphate -- 4.2.4.3 Ca-PO4 Sheet Structures -- 4.2.4.4 Highly Soluble Alkali-Containing Calcium Orthophosphates -- 4.2.4.5 Other Resorbable Bioceramics -- References -- Chapter 5 Technology of Coating Deposition -- 5.1 Overview -- 5.2 Non-Thermal Deposition Methods -- 5.2.1 Biomimetic Route -- 5.2.1.1 General Aspects -- 5.2.1.2 Chemistry of Biomimetic Precipitation -- 5.2.1.3 Biomimetic Calcium Phosphate Coatings Deposited on Various Substrates -- 5.2.2 Sol-Gel Deposition -- 5.2.2.1 Titania Films and Coatings -- 5.2.2.2 Hydroxyapatite -- 5.2.2.3 Other Types of Coating -- 5.2.3 Dip and Spin Coating -- 5.2.3.1 Dip Coating -- 5.2.3.2 Spin Coating -- 5.2.4 Electrochemical Deposition (ECD) -- 5.2.4.1 Electrochemical Reactions -- 5.2.4.2 Acid-Base Reactions -- 5.2.4.3 Precipitation Reactions -- 5.2.5 Electrophoretic Deposition (EPD) -- 5.2.5.1 General Aspects -- 5.2.5.2 Electrophoretic Deposition of Calcium Phosphate Coatings -- 5.2.6 Thermal Substrate Deposition (Hydroprocessing) -- 5.2.7 Hydrothermal Coating Deposition -- 5.2.8 Electron- and Ion Beam-Assisted Deposition (EBAD, IBAD) -- 5.2.9 Radio Frequency (r.f.) Magnetron Sputtering -- 5.3 Thermal Deposition Methods -- 5.3.1 Atmospheric Plasma Spraying (APS) -- 5.3.1.1 The Physics Behind the Process -- 5.3.1.2 Micro-Plasma Spraying (MPS) and Low Energy Plasma Spraying (LEPS) -- 5.3.2 Low-Pressure (Vacuum) Plasma Spraying (LPPS, VPS) -- 5.3.3 Suspension Plasma Spraying (SPS) -- 5.3.3.1 Hydroxyapatite Coatings -- 5.3.3.2 Titanium Oxide Coatings -- 5.3.3.3 Bioglass Coatings -- 5.3.3.4 Other Types of Coating -- 5.3.4 High Velocity Suspension Flame Spraying (HVSFS) -- 5.3.4.1 Hydroxyapatite Coatings -- 5.3.4.2 Titanium Oxide Coatings. 5.3.4.3 Bioglass Coatings -- 5.3.4.4 Other Coatings -- 5.3.5 Solution Precursor Plasma Spraying (SPPS) -- 5.3.6 Cold Gas Dynamic Spraying (CGDS) -- 5.3.6.1 Fundamentals -- 5.3.6.2 Bioceramic Coatings -- 5.3.7 Plasma Electrolytic Oxidation (PEO) -- 5.3.7.1 Magnesium Substrates -- 5.3.7.2 Titanium Substrates -- 5.3.8 Pulsed Laser Deposition (PLD) -- 5.4 Other Techniques -- 5.4.1 Flame Spraying -- 5.4.1.1 Oxygen/Acetylene Flame Spraying -- 5.4.1.2 High Velocity Oxyfuel Spraying (HVOF) -- 5.4.2 Inductively Coupled Plasma Spraying (ICPS) -- 5.4.3 Chemical Vapour Deposition (CVD) -- 5.4.4 Laser Alloying -- 5.4.5 Phase Inversion Technique -- References -- Chapter 6 Deposition, Structure, Properties and Biological Function of~Plasma-Sprayed Bioceramic Coatings -- 6.1 General Requirements and Performance Profile of Plasma-Sprayed Bioceramic Coatings -- 6.2 Structure and Biomedical Functions of Bioceramic Coatings -- 6.2.1 Hydroxyapatite Coatings -- 6.2.1.1 Microstructural and Compositional Changes During Plasma Spraying and Incubation in SBF -- 6.2.1.2 Thermal Decomposition of Hydroxyapatite During Plasma Spraying -- 6.2.1.3 Parametric Study of Thermal Decomposition of Hydroxyapatite -- 6.2.1.4 The Oxyapatite Problem -- 6.2.1.5 Biological Responses to Hydroxyapatite Coatings -- 6.2.2 Composite Coatings -- 6.2.2.1 Hydroxyapatite/Titania Composite Coatings -- 6.2.2.2 Hydroxyapatite/Zirconia Composite Coatings -- 6.2.2.3 Hydroxyapatite/Alumina/Carbon Nanotube Composite Coatings -- 6.2.3 Biphasic Hydroxyapatite/Tricalcium Phosphate Coatings -- 6.2.4 Transition Metal-Substituted Calcium Orthophosphate Coatings -- 6.2.4.1 Coating Thickness -- 6.2.4.2 Coating Porosity -- 6.2.4.3 Tensile Adhesion and Shear Strengths -- 6.3 The Role of Bond Coats -- 6.3.1 Engineering the Substrate-Coating Interface -- 6.3.2 Selected Bond Coats -- 6.3.2.1 Calcium Silicate Bond Coats. 6.3.2.2 Titania Bond Coats -- 6.3.2.3 Zirconia Bond Coats -- 6.3.2.4 Mixed Zirconia/Titania Bond Coats -- References -- Chapter 7 Characterisation and Testing of Bioceramic Coatings -- 7.1 Phase Composition: X-ray Diffraction -- 7.1.1 Fundamentals -- 7.1.2 X-ray Diffraction of Plasma-Sprayed Hydroxyapatite Coatings -- 7.2 Phase Composition: Vibrational (Infrared and Raman) Spectroscopy -- 7.2.1 Fundamentals -- 7.2.1.1 Infrared Spectroscopy -- 7.2.1.2 Raman Spectroscopy -- 7.2.2 Raman Microscopy of Bioceramic and Photoactive Titania Coatings -- 7.2.3 Infrared and Raman Spectra of Hydroxyapatite Coatings -- 7.2.3.1 Fourier Transform Infrared (FTIR) Spectroscopy -- 7.2.3.2 Raman spectroscopy -- 7.3 Phase Composition: Nuclear Magnetic Resonance Spectroscopy -- 7.3.1 Fundamentals -- 7.3.2 NMR Spectra of Hydroxyapatite Coatings -- 7.4 Phase Composition: Cathodoluminescence -- 7.4.1 Fundamentals -- 7.4.2 Cathodoluminescence Microscopy of Plasma-Sprayed Hydroxyapatite Coatings -- 7.5 Adhesion of Coatings to the Substrate -- 7.5.1 Fundamentals -- 7.5.1.1 Tensile Pull Test -- 7.5.1.2 Modified Peel Test -- 7.5.1.3 Scratch Testing -- 7.5.1.4 Ultrasonic Testing -- 7.5.2 Adhesion of Plasma-Sprayed Hydroxyapatite Coatings -- 7.5.2.1 Modified Peel Test According to ASTM D3167-10 -- 7.5.2.2 Tensile Test -- 7.5.2.3 Scratch Test -- 7.5.2.4 Laser Shock Adhesion Test (LASAT) -- 7.6 Residual Coating Stresses -- 7.6.1 Fundamentals -- 7.6.2 X-ray Diffraction Measurements (sin2ψ-Technique) -- 7.6.3 Stress Determination by Curvature Measurement (Almen-Type Test) -- 7.6.4 Hole-Drilling Strain Gauge Method -- 7.6.5 Photoluminescence Piezospectroscopy -- 7.6.6 Residual Stresses in Plasma-Sprayed Hydroxyapatite Coatings -- 7.6.6.1 Stress Analysis by X-ray Diffraction -- 7.6.6.2 Stress Analysis by Curvature Measurement. 7.6.6.3 Stress Analysis by the Hole-Drilling Strain Gauge Method -- 7.6.6.4 Stress Analysis by Raman Piezospectroscopy -- 7.7 Fundamentals of Roughness and Porosity -- 7.8 Microhardness -- 7.8.1 Fundamentals -- 7.8.2 Microhardness of Hydroxyapatite Coatings -- 7.9 Potentiodynamic Polarisation and Electrochemical Impedance Spectroscopy (EIS) -- 7.9.1 Fundamentals -- 7.9.2 Corrosion Protection of Metal Implants through Coatings -- 7.10 Biological Performance Testing of Bioceramic Coatings -- 7.10.1 Composition of Simulated Body Fluids -- 7.10.2 Interaction of Simulated Body Fluids and Coatings -- 7.10.2.1 Structure and Transformation of Amorphous Calcium Phosphate (ACP) -- 7.10.2.2 EELS and PIXE Studies -- 7.10.3 Cell Proliferation and Viability Tests -- 7.10.3.1 Alkaline Phosphatase (ALP) Activity -- 7.10.3.2 Expression of Non-collagenous Proteins -- 7.10.3.3 AlamarBlue® and MTT Assays -- 7.10.3.4 Fluorescence Staining -- 7.10.4 In vivo Testing of Bioceramic Coatings Using Animal Models -- 7.10.4.1 Rat Model -- 7.10.4.2 Rabbit Model -- 7.10.4.3 Dog Model -- 7.10.4.4 Sheep Model -- 7.10.4.5 Other Animal Models -- References -- Chapter 8 Future Developments and Outlook -- References -- Appendix: Relevant Scientific Journals/Book Series with Bioceramic Content -- Index -- EULA.
9783527684021
Biomedical materials -- Testing.
Electronic books.
R857.M3 -- .H456 2015eb
610.284