Andrews, David L.
Photonics, Volume 3 : Photonics Technology and Instrumentation.
- 1st ed.
- 1 online resource (544 pages)
- A Wiley-Science Wise Co-Publication .
- A Wiley-Science Wise Co-Publication .
Intro -- Photonics -- Contents -- List of Contributors -- Preface -- 1 Solid-State Lighting: Toward Smart and Ultraefficient Materials, Devices, Lamps, and Systems -- 1.1 A Brief History of SSL [1] -- 1.1.1 Stepping Stones: Red and Blue LEDs -- 1.1.2 State-of-the-Art SSL Device Architecture: InGaN Blue LED + Green/Red Phosphors -- 1.1.3 State-of-the-Art SSL Lamp Architectures -- 1.1.4 SSL Applications -- 1.2 Beyond the State-of-the-Art: Smart and Ultraefficient SSL -- 1.2.1 Characteristics: Multicolor Electroluminescence, Narrowband Spectra, High Modulation Speed -- 1.2.2 Potential Future System Applications -- 1.2.3 Benefits: "Effective" Efficiency, Consumption of Light, and GDP -- 1.3 Ultraefficient SSL Lighting: Toward Multicolor Semiconductor Electroluminescence -- 1.3.1 Blue Materials and Devices -- 1.3.2 Green Materials and Devices -- 1.3.3 Red Materials and Devices -- 1.4 Smart Solid-State Lighting: Toward Control of Flux and Spectra in Time and Space -- 1.4.1 Optical Integration: Mixing Colors While Maintaining Low Etendue -- 1.4.2 Optoelectronic Integration: Reliability, Functionality, and Cost -- 1.4.3 Optomechanical Integration: Control of Flux in Space -- 1.5 Summary and Conclusions -- Acknowledgments -- References -- 2 Integrated Optics Using High Contrast Gratings -- 2.1 Introduction -- 2.2 Physics of Near-Wavelength Grating -- 2.2.1 Overview of the Underlying Principles -- 2.2.2 Analytical Formulation -- 2.2.3 HCG Supermodes and Their Interferences -- 2.2.4 HCG Band Diagram -- 2.3 Applications of HCGs -- 2.3.1 High-Contrast-Grating-Based VCSELs -- 2.3.2 All-Pass Optical Filter Array as Optical Phase Array -- 2.3.3 Planar High Numerical Aperture Focusing Reflectors and Lenses -- 2.3.4 Resonator with Surface-Normal Optical Coupling -- 2.3.5 HCG for High-Precision Metrology -- 2.3.6 High Contrast Grating Hollow-Core Waveguide. 2.3.7 HCG Photon Cage -- 2.3.8 Vertical-to-in-Plane Optical Coupler -- 2.4 Summary -- Acknowledgments -- References -- 3 Plasmonic Crystals: Controlling Light With Periodically Structured Metal Films -- 3.1 Introduction -- 3.2 Surface Plasmon Polaritons -- 3.3 Basics of Surface Plasmon Polaritonic Crystals -- 3.3.1 Bloch Mode Structure -- 3.3.2 Enhanced Optical Transmission Through Plasmonic Crystals -- 3.3.3 Improving Surface Transparency of Dielectrics with Nanostructured Metal -- 3.4 Polarization and Wavelength Management with Plasmonic Crystals -- 3.4.1 Polarization Properties of Plasmonic Crystals with Rectangular Basis -- 3.4.2 Birefringence of Plasmonic Crystals with Elliptical Basis -- 3.4.3 Polarization Superprism Effect -- 3.4.4 Four-Level Polarization Discriminator Based on SPPCs -- 3.4.5 Wavelength Demultiplexing with Plasmonic Crystals -- 3.5 Chirped Plasmonic Crystals: Broadband and Broadangle SPP Antennas Based on Plasmonic Crystals -- 3.6 Active Control of Light with Plasmonic Crystals -- 3.6.1 Electronically Controlled SPP Dispersion -- 3.6.2 Magneto-Optical Control of Plasmonic Crystal Transmission -- 3.6.3 Acoustic Effects in Plasmonic Crystals -- 3.6.4 Nonlinear Plasmonic Crystals -- 3.7 Conclusion -- Acknowledgments -- References -- 4 Optical Holography -- 4.1 Introduction -- 4.2 Basic Concepts in Holography -- 4.2.1 Holographic Recording and Image Formation -- 4.2.2 Grating Equation -- 4.3 Hologram Analysis -- 4.3.1 Hologram Image Analysis and Design -- 4.3.2 Hologram Diffraction Efficiency -- 4.3.3 Comments on Rigorous Coupled Wave Analysis -- 4.4 Hologram Geometries -- 4.5 Holographic Recording Materials -- 4.6 Digital Holography -- 4.6.1 Numerical Reconstruction Methods -- 4.6.2 Image Enhancement Techniques -- 4.7 Computer Generated Holography -- 4.7.1 Wavefront Computation and Sampling. 4.7.2 Wavefront Encoding Schemes and CGH Formation -- 4.8 Holographic Applications -- 4.8.1 Holographic Optical Elements -- 4.8.2 Holographic Interferometry -- 4.8.3 Near Real Time Holographic Displays -- 4.8.4 Holographic Data Storage -- 4.8.5 Volume Holographic Imaging Systems -- 4.8.6 Holographic Planar Concentrators -- 4.8.7 Dynamic Holographic Assembly -- References -- 5 Cloaking and Transformation Optics -- 5.1 Introduction -- 5.2 Theoretical Underpinning -- 5.2.1 The Genesis of Transformation Optics -- 5.2.2 The Electromagnetic Cloak -- 5.3 The Carpet Cloak -- 5.3.1 Cloaking Using Natural Materials -- 5.4 Conformal Cloaking -- 5.5 Spacetime Cloaking -- 5.5.1 Realization of the Spacetime Cloak -- 5.5.2 Applications of the Spacetime Cloak -- 5.6 Conclusion and Outlook: Beyond Optics -- Appendix 5.A: Technicalities -- Appendix 5.B: Vectors and Tensors in Flat Spacetime -- Appendix 5.C: Maxwell's Equations and Constitutive Relations in Covariant Form -- References -- 6 Photonic Data Buffers -- 6.1 Introduction -- 6.2 Applications of Photonic Buffers -- 6.2.1 Photonic Buffers in Computing and Signal Processing -- 6.2.2 Photonic Buffers in Optical Packet Switches and Routers -- 6.3 Limitations of Electronics -- 6.4 Photonic Buffer Technologies -- 6.4.1 Variable Photonic Buffers using Fiber Delay Lines and Optical Switches -- 6.4.2 Variable Photonic Buffers using Slow Light Effect -- 6.4.3 Hybrid Photonic Buffers using CMOS and Photonics -- 6.5 Integration Efforts -- 6.6 Summary -- References -- 7 Optical Forces, Trapping and Manipulation -- 7.1 Introduction -- 7.1.1 A Brief History of Optical Forces -- 7.1.2 Optical Forces Might be Useful -- 7.1.3 A Diverse Range of Applications -- 7.2 Theory of Optical Forces -- 7.2.1 Force Efficiency -- 7.2.2 Rayleigh and Dipole Scattering Models of Optical Tweezers. 7.2.3 Corpuscular Ray Model of Optical Tweezers -- 7.2.4 The Distinction Between Gradient, Scattering, Conservative and Nonconservative Forces -- 7.3 Theory of Optical Torques -- 7.3.1 Spin and Orbital Angular Momentum -- 7.3.2 Optical Vortices -- 7.3.3 Angular Momentum of Non-Paraxial Electromagnetic Fields -- 7.3.4 Rotational Frequency Shift -- 7.4 Measurement of Forces and Torques -- 7.4.1 The Relationship Between Force and Position -- 7.4.2 Measurement of Potentials -- 7.4.3 Measurement of Spin Angular Momentum -- 7.4.4 Measurement of Orbital Angular Momentum -- 7.5 Calculation of Forces and Torques -- 7.5.1 The T-Matrix Description of Scattering -- 7.5.2 Spherical Wave Spectrum -- 7.5.3 Force and Torque -- 7.5.4 Incident Beam -- 7.5.5 Optical Tweezers Toolbox -- 7.5.6 Practical Considerations of the Rayleigh Model -- 7.5.7 Practical Considerations of the Ray Model -- 7.6 Conclusion -- References -- 8 OPTOFLUIDICS -- 8.1 Introduction -- 8.2 Photonics with Fluid Manipulation -- 8.2.1 Optofluidic Switch -- 8.2.2 Flow Induced Optical Scanner -- 8.2.3 Optical Resonance Fine Tuning -- 8.2.4 Optofluidic Laser -- 8.2.5 Optofluidic Waveguide for Microelectronics -- 8.3 Fluidic Sensing -- 8.4 Fluidic Enabled Imaging -- 8.5 Fluid Assisted Nanopatterning -- 8.6 Conclusions and Outlook -- Acknowledgments -- References -- 9 Nanoplasmonic Sensing for Nanomaterials Science -- 9.1 Introduction -- 9.2 Nanoplasmonic Sensing and Readout -- 9.3 Inherent Limitations of Nanoplasmonic Sensors -- 9.4 Direct Nanoplasmonic Sensing -- 9.5 Indirect Nanoplasmonic Sensing -- 9.6 Overview on Different Examples -- 9.6.1 Polymer Swelling -- 9.6.2 Hydride Formation -- 9.6.3 Phase Transitions -- 9.6.4 Corrosion -- 9.6.5 Nanoparticle Sintering -- 9.6.6 Recrystallization -- 9.6.7 Molecular Diffusion in Materials -- 9.6.8 Gas Sensing and Catalysis Applications. 9.7 Discussion and Outlook -- References -- 10 Laser Fabrication and Nanostructuring -- 10.1 Introduction -- 10.2 Laser Systems for Nanostructuring -- 10.3 Surface Structuring by Laser Ablation -- 10.3.1 Structuring Via Interferometer -- 10.3.2 Near-field Nanostructuring -- 10.4 Generation of thin Films by Laser Ablation in Vacuum -- 10.5 Generation of Nanoparticles by Laser Ablation in Liquids -- 10.6 Laser Induced Volume Structures -- 10.7 Direct Writing of Polymer Components Via Two-Photon Polymerization -- 10.8 Conclusion -- References -- 11 Free Electron Lasers for Photonics Technology by Wiley -- 11.1 Introduction -- 11.2 Physical Principles -- 11.2.1 Synchrotron Emission -- 11.2.2 Free Electron Laser Interaction -- 11.2.3 Oscillators -- 11.2.4 Amplifiers -- 11.3 Worldwide Fel Status -- 11.3.1 X-ray FELs -- 11.3.2 Visible, Infrared, and Far Infrared FELs -- 11.4 Applications -- 11.4.1 THz -- 11.4.2 IR -- 11.4.3 UV and VUV -- 11.4.4 Soft X-ray -- 11.4.5 Hard X-ray -- 11.5 Summary and Conclusion -- References -- Index -- Supplemental Images -- EULA.
9781119011767
Optoelectronic devices.
Photonics -- Equipment and supplies.
Electronic books.
TK8304 -- .P468 2015eb