TY - BOOK AU - Goodman,Joseph W. TI - Statistical Optics T2 - Wiley Series in Pure and Applied Optics Series SN - 9781119009467 AV - QC355.2 -- .G663 2015eb U1 - 535.01/5195 PY - 2015/// CY - Newark PB - John Wiley & Sons, Incorporated KW - Optics -- Statistical methods KW - Mathematical statistics KW - Electronic books N1 - Cover -- Title Page -- Copyright -- Dedication -- Preface-Second Edition -- Preface-First Edition -- Contents -- Chapter 1 Introduction -- 1.1 Deterministic Versus Statistical Phenomena and Models -- 1.2 Statistical Phenomena in Optics -- 1.3 An Outline of the Book -- Chapter 2 Random Variables -- 2.1 Definitions of Probability and Random Variables -- 2.2 Distribution Functions and Density Functions -- 2.3 Extension to Two or More Joint Random Variables -- 2.4 Statistical Averages -- 2.4.1 Moments of a Random Variable -- 2.4.2 Joint Moments of Random Variables -- 2.4.3 Characteristic Functions and Moment-Generating Functions -- 2.5 Transformations of Random Variables -- 2.5.1 General Transformations -- 2.5.2 Monotonic Transformations -- 2.5.3 Multivariate Transformations -- 2.6 Sums of Real Random Variables -- 2.6.1 Two Methods for Finding pZ(z) -- 2.6.2 Independent Random Variables -- 2.6.3 The Central Limit Theorem -- 2.7 Gaussian Random Variables -- 2.7.1 Definitions -- 2.7.2 Special Properties of Gaussian Random Variables -- 2.8 Complex-Valued Random Variables -- 2.8.1 General Descriptions -- 2.8.2 Complex Gaussian Random Variables -- 2.8.3 The Complex Gaussian Moment Theorem -- 2.9 Random Phasor Sums -- 2.9.1 Initial Assumptions -- 2.9.2 Calculations of Means, Variances, and the Correlation Coefficient -- 2.9.3 Statistics of the Length and Phase -- 2.9.4 Constant Phasor Plus a Random Phasor Sum -- 2.9.5 Strong Constant Phasor Plus a Weak Random Phasor Sum -- 2.10 Poisson Random Variables -- Problems -- Chapter 3 Random Processes -- 3.1 Definition and Description of a Random Process -- 3.2 Stationarity and Ergodicity -- 3.3 Spectral Analysis of Random Processes -- 3.3.1 Spectral Densities of a Known Function -- 3.3.2 Spectral Densities of a Random Process -- 3.3.3 Energy and Power Spectral Densities for Linearly Filtered Random Processes; 3.4 Autocorrelation Functions and the Wiener--Khinchin Theorem -- 3.4.1 Definitions and Properties -- 3.4.2 Relationship to the Power Spectral Density -- 3.4.3 An Example Calculation -- 3.4.4 Autocovariance Functions and Structure Functions -- 3.5 Cross-Correlation Functions and Cross-Spectral Densities -- 3.6 Gaussian Random Processes -- 3.6.1 Definition -- 3.6.2 Linearly Filtered Gaussian Random Processes -- 3.6.3 Wide-Sense Stationarity and Strict Stationarity -- 3.6.4 Fourth- and Higher-Order Moments -- 3.7 Poisson Impulse Processes -- 3.7.1 Definition -- 3.7.2 Derivation of Poisson Statistics from Fundamental Hypotheses -- 3.7.3 Derivation of Poisson Statistics from Random Event Times -- 3.7.4 Energy and Power Spectral Densities of Poisson Processes -- 3.7.5 Doubly Stochastic Poisson Processes -- 3.7.6 Spectral Densities of Linearly Filtered Poisson Impulse Processes -- 3.8 Random Processes Derived from Analytic Signals -- 3.8.1 Representation of a Monochromatic Signal by a Complex Signal -- 3.8.2 Representation of a Nonmonochromatic Signal by a Complex Signal -- 3.8.3 Complex Envelopes or Time-Varying Phasors -- 3.8.4 The Analytic Signal as a Complex-Valued Random Process -- 3.9 The Circular Complex Gaussian Random Process -- 3.10 The Karhunen-Loève Expansion -- Problems -- Chapter 4 Some First-Order Statistical Properties of Light -- 4.1 Propagation of Light -- 4.1.1 Monochromatic Light -- 4.1.2 Nonmonochromatic Light -- 4.1.3 Narrowband Light -- 4.1.4 Intensity or Irradiance -- 4.2 Thermal Light -- 4.2.1 Polarized Thermal Light -- 4.2.2 Unpolarized Thermal Light -- 4.3 Partially Polarized Thermal Light -- 4.3.1 Passage of Narrowband Light Through Polarization-Sensitive Systems -- 4.3.2 The Coherency Matrix -- 4.3.3 The Degree of Polarization -- 4.3.4 First-Order Statistics of the Instantaneous Intensity -- 4.4 Single-Mode Laser Light; 4.4.1 An Ideal Oscillation -- 4.4.2 Oscillation with a Random Instantaneous Frequency -- 4.4.3 The Van der Pol Oscillator Model -- 4.4.4 A More Complete Solution for Laser Output Intensity Statistics -- 4.5 Multimode Laser Light -- 4.5.1 Amplitude Statistics -- 4.5.2 Intensity Statistics -- 4.6 Pseudothermal Light Produced by Passing Laser Light Through a Changing Diffuser -- Problems -- Chapter 5 Temporal and Spatial Coherence of Optical Waves -- 5.1 Temporal Coherence -- 5.1.1 Interferometers that Measure Temporal Coherence -- 5.1.2 The Role of the Autocorrelation Function in Predicting the Interferogram -- 5.1.3 Relationship Between the Interferogram and the Power Spectral Density of the Light -- 5.1.4 Fourier Transform Spectroscopy -- 5.1.5 Optical Coherence Tomography -- 5.1.6 Coherence Multiplexing -- 5.2 Spatial Coherence -- 5.2.1 Young's Experiment -- 5.2.2 Mathematical Description of the Experiment -- 5.2.3 Some Geometrical Considerations -- 5.2.4 Interference Under Quasimonochromatic Conditions -- 5.2.5 Cross-Spectral Density and the Spectral Degree of Coherence -- 5.2.6 Summary of the Various Measures of Coherence -- 5.2.7 Effects of Finite Pinhole Size -- 5.3 Separability of Spatial and Temporal Coherence Effects -- 5.4 Propagation of Mutual Coherence -- 5.4.1 Solution Based on the Huygens-Fresnel Principle -- 5.4.2 Wave Equations Governing Propagation of Mutual Coherence -- 5.4.3 Propagation of Cross-Spectral Density -- 5.5 Special Forms of the Mutual Coherence Function -- 5.5.1 A Coherent Field -- 5.5.2 An Incoherent Field -- 5.5.3 A Schell-Model Field -- 5.5.4 A Quasihomogeneous Field -- 5.5.5 Expansion of the Mutual Intensity Function in Coherent Modes -- 5.6 Diffraction of Partially Coherent Light by a Transmitting Structure -- 5.6.1 Effect of a Thin Transmitting Structure on Mutual Intensity; 5.6.2 Calculation of the Observed Intensity Pattern -- 5.6.3 Discussion -- 5.6.4 An Example -- 5.7 The Van Cittert-Zernike Theorem -- 5.7.1 Mathematical Derivation of the Theorem -- 5.7.2 Discussion -- 5.7.3 An Example -- 5.8 A Generalized Van Cittert-Zernike Theorem -- 5.9 Ensemble-Average Coherence -- Problems -- Chapter 6 Some Problems Involving Higher-Order Coherence -- 6.1 Statistical Properties of the Integrated Intensity of Thermal or Pseudothermal Light -- 6.1.1 Mean and Variance of the Integrated Intensity -- 6.1.2 Approximate Form of the Probability Density Function of Integrated Intensity -- 6.1.3 "Exact" Solution for the Probability Density Function of Integrated Intensity -- 6.2 Statistical Properties of Mutual Intensity with Finite Measurement Time -- 6.2.1 Moments of the Real and Imaginary Parts of J12(T) -- 6.3 Classical Analysis of the Intensity Interferometer -- 6.3.1 Amplitude versus Intensity Interferometry -- 6.3.2 Ideal Output of the Intensity Interferometer -- 6.3.3 "Classical" or "Self"-Noise at the Interferometer Output -- Problems -- Chapter 7 Effects of Partial Coherence in Imaging Systems -- 7.1 Preliminaries -- 7.1.1 Passage of Partially Coherent Light through a Thin Transmitting Structure -- 7.1.2 Hopkins' Formula -- 7.1.3 Focal Plane to Focal Plane Coherence Relationships -- 7.1.4 A Generic Optical Imaging System -- 7.2 Space-Domain Calculation of Image Intensity -- 7.2.1 An Approach to Calculate the Mutual Intensity Incident on the Object -- 7.2.2 Zernike's Approximation -- 7.2.3 Critical Illumination and Köhler's Illumination -- 7.3 Frequency Domain Calculation of the Image Intensity Spectrum -- 7.3.1 Mutual Intensity Relations in the Frequency Domain -- 7.3.2 The Transmission Cross-Coefficient -- 7.4 The Incoherent and Coherent Limits -- 7.4.1 The Incoherent Case -- 7.4.2 The Coherent Case; 7.4.3 When is an Optical Imaging System Fully Coherent or Fully Incoherent? -- 7.5 Some Examples -- 7.5.1 The Image of Two Closely Spaced Points -- 7.5.2 The Image of an Amplitude Step -- 7.5.3 The Image of a π-Radian Phase Step -- 7.5.4 The Image of a Sinusoidal Amplitude Object -- 7.6 Image Formation as an Interferometric Process -- 7.6.1 An Imaging System as an Interferometer -- 7.6.2 The Case of an Incoherent Object -- 7.6.3 Gathering Image Information with Interferometers -- 7.6.4 The Michelson Stellar Interferometer -- 7.6.5 The Importance of Phase Information -- 7.6.6 Phase Retrieval in One Dimension -- 7.6.7 Phase Retrieval in Two Dimensions - Iterative Phase Retrieval -- 7.7 The Speckle Effect in Imaging -- 7.7.1 The Origin and First-Order Statistics of Speckle -- 7.7.2 Ensemble-Average Van Cittert-Zernike Theorem -- 7.7.3 The Power Spectral Density of Image Speckle -- 7.7.4 Speckle Suppression -- Problems -- Chapter 8 Imaging Through Randomly Inhomogeneous Media -- 8.1 Effects of Thin Random Screens on Image Quality -- 8.1.1 Assumptions and Simplifications -- 8.1.2 The Average Optical Transfer Function -- 8.1.3 The Average Point-Spread Function -- 8.2 Random-Phase Screens -- 8.2.1 General Formulation -- 8.2.2 The Gaussian Random-Phase Screen -- 8.2.3 Limiting Forms for the Average OTF and the Average PSF for Large Phase Variance -- 8.3 The Earth's Atmosphere as a Thick Phase Screen -- 8.3.1 Definitions and Notation -- 8.3.2 Atmospheric Model -- 8.4 Electromagnetic Wave Propagation Through the Inhomogeneous Atmosphere -- 8.4.1 Wave Equation in an Inhomogeneous Transparent Medium -- 8.4.2 The Born Approximation -- 8.4.3 The Rytov Approximation -- 8.4.4 Intensity Statistics -- 8.5 The Long-Exposure OTF -- 8.5.1 Long-Exposure OTF in Terms of the Wave Structure Function -- 8.5.2 Near-Field Calculation of the Wave Structure Function; 8.5.3 Effects of Smooth Variations of the Refractive Index Structure Constant Cn2 UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=1895905 ER -