Tao, Franklin.

Heterogeneous Catalysis at Nanoscale for Energy Applications. - 1st ed. - 1 online resource (361 pages)

Intro -- Title Page -- Copyright Page -- Contents -- Contributors -- Chapter 1 Introduction -- References -- Chapter 2 Chemical Synthesis of Nanoscale Heterogeneous Catalysts -- 2.1 Introduction -- 2.2 Brief Overview of Heterogeneous Catalysts -- 2.3 Chemical Synthetic Approaches -- 2.3.1 Colloidal Synthesis -- 2.3.2 Shape Control of Catalysts in Colloidal Synthesis -- 2.3.3 Control of Crystalline Phase of Intermetallic Nanostructures -- 2.3.4 Other Modes of Formation for Complex Nanostructures -- 2.4 Core-Shell Nanoparticles and Controls of Surface Compositions and Surface Atomic Arrangements -- 2.4.1 New Development on the Preparation of Colloidal Core-Shell Nanoparticles -- 2.4.2 Electrochemical Methods to Core-Shell Nanostructures -- 2.4.3 Control of Surface Composition via Surface Segregation -- 2.5 Summary -- References -- Chapter 3 Physical Fabrication of Nanostructured Heterogeneous Catalysts -- 3.1 Introduction -- 3.2 Cluster Sources -- 3.2.1 Thermal Vaporization Source -- 3.2.2 Laser Ablation Source -- 3.2.3 Magnetron Cluster Source -- 3.2.4 Arc Cluster Ion Source -- 3.3 Mass Analyzers -- 3.3.1 Neutral Cluster Beams -- 3.3.2 Quadrupole Mass Analyzer -- 3.3.3 Lateral TOF Mass Filter -- 3.3.4 Magnetic Sector Mass Selector -- 3.3.5 Quadrupole Deflector (Bender) -- 3.4 Survey of Cluster Deposition Apparatuses in Catalysis Studies -- 3.4.1 Laser Ablation Source with a Quadrupole Mass Analyzer at Argonne National Lab -- 3.4.2 ACIS with a Quadrupole Deflector at the Universität Rostock -- 3.4.3 Magnetron Cluster Source with a Lateral TOF Mass Filter at the University of Birmingham -- 3.4.4 Laser Ablation Cluster Source with a Quadrupole Mass Selector at the Technische Universität München -- 3.4.5 Laser Ablation Cluster Source with a Quadrupole Mass Analyzer at the University of Utah. 3.4.6 Laser Ablation Cluster Source with a Magnetic Sector Mass Selector at the University of California, Santa Barbara -- 3.4.7 Magnetron Cluster Source with a Quadrupole Mass Filter at the Toyota Technological Institute -- 3.4.8 PACIS with a Magnetic Sector Mass Selector at Universität Konstanz -- 3.4.9 Magnetron Cluster Source with a Magnetic Sector at Johns Hopkins University -- 3.4.10 Magnetron Cluster Source with a Magnetic Sector at HZB -- 3.4.11 Magnetron Sputtering Source with a Quadrupole Mass Filter at the Technical University of Denmark -- 3.4.12 CORDIS with a Quadrupole Mass Filter at the Lausanne Group -- 3.4.13 Electron Impact Source with a Quadrupole Mass Selector at the Universität Karlsruhe -- 3.4.14 CORDIS with a Quadrupole Mass Analyzer at the Universität Ulm -- 3.4.15 Magnetron Cluster Source with a Lateral TOF Mass Filter at the Universität Dortmund -- 3.4.16 Z-Spray Source with a Quadrupole Mass Filter for Gas-Phase Investigations at FELIX -- 3.4.17 Laser Ablation Source with an Ion Cyclotron Resonance Mass Spectrometer for Gas-Phase Investigations at the Technische Universität Berlin -- Acknowledgments -- References -- Chapter 4 Ex Situ Characterization -- 4.1 Introduction -- 4.2 Ex Situ Characterization Techniques -- 4.2.1 X-Ray Absorption Spectroscopy -- 4.2.2 Electron Spectroscopy -- 4.2.3 Electron Microscopy -- 4.2.4 Scanning Probe Microscopy -- 4.2.5 Mössbauer Spectroscopy -- 4.3 Some Examples on Ex Situ Characterization of Nanocatalysts for Energy Applications -- 4.3.1 Illustrating Structural and Electronic Properties of Complex Nanocatalysts -- 4.3.2 Elucidating Structural Characteristics of Catalysts at the Nanometer or Atomic Level -- 4.3.3 Pinpointing the Nature of the Active Sites on Nanocatalysts -- 4.4 Conclusions -- Acknowledgments -- References. Chapter 5 Applications of Soft X-Ray Absorption Spectroscopy for In Situ Studies of Catalysts at Nanoscale -- 5.1 Introduction -- 5.2 In Situ SXAS under Reaction Conditions -- 5.3 Examples of In Situ SXAS Studies under Reaction Conditions Using Reaction Cells -- 5.3.1 Atmospheric Corrosion of Metal Films -- 5.3.2 Cobalt Nanoparticles under Reaction Conditions -- 5.3.3 Electrochemical Corrosion of Cu in Aqueous NaHCO3 Solution -- 5.4 Summary -- References -- Chapter 6 First-Principles Approaches to Understanding Heterogeneous Catalysis -- 6.1 Introduction -- 6.2 Computational Models -- 6.2.1 Electronic Structure Methods -- 6.2.2 System Models -- 6.3 NOx Reduction -- 6.4 Adsorption at Metal Surfaces -- 6.4.1 Neutral Adsorbates -- 6.4.2 Charged Adsorbates -- 6.5 Elementary Surface Reactions Between Adsorbates -- 6.5.1 Reaction Thermodynamics -- 6.5.2 Reaction Kinetics -- 6.6 Coverage Effects on Reaction and Activation Energies at Metal Surfaces -- 6.7 Summary -- References -- Chapter 7 Computational Screening for Improved Heterogeneous Catalysts and Electrocatalysts -- 7.1 Introduction -- 7.2 Trends-Based Studies in Computational Catalysis -- 7.2.1 Early Groundwork for Computational Catalyst Screening -- 7.2.2 Volcano Plots and Rate Theory Models -- 7.2.3 Scaling Relations, BEP Relations, and Descriptor Determination -- 7.3 Computational Screening of Heterogeneous Catalysts and Electrocatalysts -- 7.3.1 Computational Catalyst Screening Strategies -- 7.4 Challenges and New Frontiers in Computational Catalyst Screening -- 7.5 Conclusions -- Acknowledgments -- References -- Chapter 8 Catalytic Kinetics and Dynamics -- 8.1 Introduction -- 8.2 Basics of Catalyst Functionality, Mechanisms, and Elementary Reactions on Surfaces -- 8.3 Transition State Theory, Collision Theory, and Rate Constants -- 8.4 Density Functional Theory Calculations. 8.4.1 Calculation of Energetics and Coverage Effects -- 8.4.2 Calculation of Vibrational Frequencies -- 8.5 Thermodynamic Consistency of the DFT-Predicted Energetics -- 8.6 State Properties from Statistical Thermodynamics -- 8.6.1 Strongly Bound Adsorbates -- 8.6.2 Weakly Bound Adsorbates -- 8.7 Semiempirical Methods for Predicting Thermodynamic Properties and Kinetic Parameters -- 8.7.1 Linear Scaling Relationships -- 8.7.2 Heat Capacity and Surface Entropy Estimation -- 8.7.3 Brønsted-Evans-Polanyi Relationships -- 8.8 Analysis Tools for Microkinetic Modeling -- 8.8.1 Rates in Microkinetic Modeling -- 8.8.2 Reaction Path Analysis and Partial Equilibrium Analysis -- 8.8.3 Rate-Determining Steps, Most Important Surface Intermediates, and Most Abundant Surface Intermediates -- 8.8.4 Calculation of the Overall Reaction Order and Apparent Activation Energy -- 8.9 Concluding Remarks -- Acknowledgments -- References -- Chapter 9 Catalysts for Biofuels -- 9.1 Introduction -- 9.2 Lignocellulosic Biomass -- 9.2.1 Cellulose -- 9.2.2 Hemicellulose -- 9.2.3 Lignin -- 9.3 Carbohydrate Upgrading -- 9.3.1 Zeolitic Upgrading of Cellulosic Feedstocks -- 9.3.2 Levulinic Acid Upgrading -- 9.3.3 GVL Upgrading -- 9.3.4 Aqueous-Phase Processing -- 9.4 Lignin Conversion -- 9.4.1 Zeolite Upgrading of Lignin Feedstocks -- 9.4.2 Catalysts for Hydrodeoxygenation of Lignin -- 9.4.3 Selective Unsupported Catalyst for Lignin Depolymerization -- 9.5 Continued Efforts for the Development of Robust Catalysts -- References -- Chapter 10 Development of New Gold Catalysts for Removing CO from H2 -- 10.1 Introduction -- 10.2 General Description of Catalyst Development -- 10.3 Development of WGS catalysts -- 10.3.1 Initially Developed Catalysts -- 10.3.2 Fe2O3-Based Gold Catalysts -- 10.3.3 CeO2-Based Gold Catalysts -- 10.3.4 TiO2- or ZrO2-Based Gold Catalysts. 10.3.5 Mixed-Oxide Supports with 1:1 Composition -- 10.3.6 Bimetallic Catalysts -- 10.4 Development of New Gold Catalysts for PROX -- 10.4.1 General Considerations -- 10.4.2 CeO2-Based Gold Catalysts -- 10.4.3 TiO2-Based Gold Catalysts -- 10.4.4 Al2O3-Based Gold Catalysts -- 10.4.5 Mixed Oxide Supports with 1:1 Composition -- 10.4.6 Other Oxide-Based Gold Catalysts -- 10.4.7 Supported Bimetallic catalysts -- 10.5 Perspectives -- Acknowledgments -- References -- Chapter 11 Photocatalysis in Generation of Hydrogen from Water -- 11.1 Solar Energy Conversion -- 11.1.1 Solar Energy Conversion Technology for Producing Fuels and Chemicals -- 11.1.2 Solar Spectrum and STH Efficiency -- 11.2 Semiconductor particles: Optical and Electronic Nature -- 11.2.1 Reaction Sequence and Principles of Overall Water Splitting and Reaction Step Timescales -- 11.2.2 Number of Photons Striking a Single Particle -- 11.2.3 Absorption Depth of Light Incident on Powder Photocatalyst -- 11.2.4 Degree of Band Bending in Semiconductor Powder -- 11.2.5 Band Gap and Flat-Band Potential of Semiconductor -- 11.3 Photocatalyst Materials for Overall Water Splitting: UV to Visible Light Response -- 11.3.1 UV Photocatalysts: Oxides -- 11.3.2 Visible-Light Photocatalysts: Band Engineering of Semiconductor Materials Containing Transition Metals -- 11.3.3 Visible-Light Photocatalysts: Organic Semiconductors as Water-Splitting Photocatalysts -- 11.3.4 Z-Scheme Approach: Two-Photon Process -- 11.3.5 Defects and Recombination in Semiconductor Bulk -- 11.4 Cocatalysts for Photocatalytic Overall Water Splitting -- 11.4.1 Metal Nanoparticles as Hydrogen Evolution Cocatalysts: Novel Core/Shell Structure -- 11.4.2 Reaction Rate Expression on Active Catalytic Centers for Redox Reaction in Solution -- 11.4.3 Measurement of Potentials at Semiconductor and Metal Particles Under Irradiation. 11.4.4 Metal Oxides as Oxygen Evolution Cocatalyst.

9781118843482


Energy conversion.


Electronic books.

QD505 -- .H484 2015eb