Leick, Alfred.

GPS Satellite Surveying. - 4th ed. - 1 online resource (836 pages)

Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Abbreviations -- Chapter 1 Introduction -- Chapter 2 Least-Squares Adjustments -- 2.1 Elementary Considerations -- 2.1.1 Statistical Nature of Surveying Measurements -- 2.1.2 Observational Errors -- 2.1.3 Accuracy and Precision -- 2.2 Stochastic and Mathematical Models -- 2.3 Mixed Model -- 2.3.1 Linearization -- 2.3.2 Minimization and Solution -- 2.3.3 Cofactor Matrices -- 2.3.4 A Posteriori Variance of Unit Weight -- 2.3.5 Iterations -- 2.4 Sequential Mixed Model -- 2.5 Model Specifications -- 2.5.1 Observation Equation Model -- 2.5.2 Condition Equation Model -- 2.5.3 Mixed Model with Observation Equations -- 2.5.4 Sequential Observation Equation Model -- 2.5.5 Observation Equation Model with Observed Parameters -- 2.5.6 Mixed Model with Conditions -- 2.5.7 Observation Equation Model with Conditions -- 2.6 Minimal and Inner Constraints -- 2.7 Statistics in Least-Squares Adjustment -- 2.7.1 Fundamental Test -- 2.7.2 Testing Sequential Least Squares -- 2.7.3 General Linear Hypothesis -- 2.7.4 Ellipses as Confidence Regions -- 2.7.5 Properties of Standard Ellipses -- 2.7.6 Other Measures of Precision -- 2.8 Reliability -- 2.8.1 Redundancy Numbers -- 2.8.2 Controlling Type-II Error for a Single Blunder -- 2.8.3 Internal Reliability -- 2.8.4 Absorption -- 2.8.5 External Reliability -- 2.8.6 Correlated Cases -- 2.9 Blunder Detection -- 2.9.1 Tau Test -- 2.9.2 Data Snooping -- 2.9.3 Changing Weights of Observations -- 2.10 Examples -- 2.11 Kalman Filtering -- Chapter 3 Recursive Least Squares -- 3.1 Static Parameter -- 3.2 Static Parameters and Arbitrary Time-Varying Variables -- 3.3 Dynamic Constraints -- 3.4 Static Parameters and Dynamic Constraints -- 3.5 Static Parameter, Parameters Subject to Dynamic Constraints, and Arbitrary Time-Varying Parameters. Chapter 4 Geodesy -- 4.1 International Terrestrial Reference Frame -- 4.1.1 Polar Motion -- 4.1.2 Tectonic Plate Motion -- 4.1.3 Solid Earth Tides -- 4.1.4 Ocean Loading -- 4.1.5 Relating of Nearly Aligned Frames -- 4.1.6 ITRF and NAD83 -- 4.2 International Celestial Reference System -- 4.2.1 Transforming Terrestrial and Celestial Frames -- 4.2.2 Time Systems -- 4.3 Datum -- 4.3.1 Geoid -- 4.3.2 Ellipsoid of Rotation -- 4.3.3 Geoid Undulations and Deflections of the Vertical -- 4.3.4 Reductions to the Ellipsoid -- 4.4 3D Geodetic Model -- 4.4.1 Partial Derivatives -- 4.4.2 Reparameterization -- 4.4.3 Implementation Considerations -- 4.4.4 GPS Vector Networks -- 4.4.5 Transforming Terrestrial and Vector Networks -- 4.4.6 GPS Network Examples -- 4.4.6.1 Montgomery County Geodetic Network -- 4.4.6.2 SLC Engineering Survey -- 4.4.6.3 Orange County Densification -- 4.5 Ellipsoidal Model -- 4.5.1 Reduction of Observations -- 4.5.1.1 Angular Reduction to Geodesic -- 4.5.1.2 Distance Reduction to Geodesic -- 4.5.2 Direct and Inverse Solutions on the Ellipsoid -- 4.5.3 Network Adjustment on the Ellipsoid -- 4.6 Conformal Mapping Model -- 4.6.1 Reduction of Observations -- 4.6.2 Angular Excess -- 4.6.3 Direct and Inverse Solutions on the Map -- 4.6.4 Network Adjustment on the Map -- 4.6.5 Similarity Revisited -- 4.7 Summary -- Chapter 5 Satellite Systems -- 5.1 Motion of Satellites -- 5.1.1 Kepler Elements -- 5.1.2 Normal Orbital Theory -- 5.1.3 Satellite Visibility and Topocentric Motion -- 5.1.4 Perturbed Satellite Motion -- 5.1.4.1 Gravitational Field of the Earth -- 5.1.4.2 Acceleration due to the Sun and the Moon -- 5.1.4.3 Solar Radiation Pressure -- 5.1.4.4 Eclipse Transits and Yaw Maneuvers -- 5.2 Global Positioning System -- 5.2.1 General Description -- 5.2.2 Satellite Transmissions at 2014 -- 5.2.2.1 Signal Structure -- 5.2.2.2 Navigation Message. 5.2.3 GPS Modernization Comprising Block IIM, Block IIF, and Block III -- 5.2.3.1 Introducing Binary Offset Carrier (BOC) Modulation -- 5.2.3.2 Civil L2C Codes -- 5.2.3.3 Civil L5 Code -- 5.2.3.4 M-Code -- 5.2.3.5 Civil L1C Code -- 5.3 GLONASS -- 5.4 Galileo -- 5.5 QZSS -- 5.6 Beidou -- 5.7 IRNSS -- 5.8 SBAS: WAAS, EGNOS, GAGAN, MSAS, and SDCM -- Chapter 6 GNSS Positioning Approaches -- 6.1 Observables -- 6.1.1 Undifferenced Functions -- 6.1.1.1 Pseudoranges -- 6.1.1.2 Carrier Phases -- 6.1.1.3 Range plus Ionosphere -- 6.1.1.4 Ionospheric-Free Functions -- 6.1.1.5 Ionospheric Functions -- 6.1.1.6 Multipath Functions -- 6.1.1.7 Ambiguity-Corrected Functions -- 6.1.1.8 Triple-Frequency Subscript Notation -- 6.1.2 Single Differences -- 6.1.2.1 Across-Receiver Functions -- 6.1.2.2 Across-Satellite Functions -- 6.1.2.3 Across-Time Functions -- 6.1.3 Double Differences -- 6.1.4 Triple Differences -- 6.2 Operational Details -- 6.2.1 Computing the Topocentric Range -- 6.2.2 Satellite Timing Considerations -- 6.2.2.1 Satellite Clock Correction and Timing Group Delay -- 6.2.2.2 Intersignal Correction -- 6.2.3 Cycle Slips -- 6.2.4 Phase Windup Correction -- 6.2.5 Multipath -- 6.2.6 Phase Center Offset and Variation -- 6.2.6.1 Satellite Phase Center Offset -- 6.2.6.2 User Antenna Calibration -- 6.2.7 GNSS Services -- 6.2.7.1 IGS -- 6.2.7.2 Online Computing -- 6.3 Navigation Solution -- 6.3.1 Linearized Solution -- 6.3.2 DOPs and Singularities -- 6.3.3 Nonlinear Closed Solution -- 6.4 Relative Positioning -- 6.4.1 Nonlinear Double-Difference Pseudorange Solution -- 6.4.2 Linearized Double- and Triple-Differenced Solutions -- 6.4.3 Aspects of Relative Positioning -- 6.4.3.1 Singularities -- 6.4.3.2 Impact of a Priori Position Error -- 6.4.3.3 Independent Baselines -- 6.4.3.4 Antenna Swap Technique -- 6.4.4 Equivalent Undifferenced Formulation. 6.4.5 Ambiguity Function -- 6.4.6 GLONASS Carrier Phase -- 6.5 Ambiguity Fixing -- 6.5.1 The Constraint Solution -- 6.5.2 LAMBDA -- 6.5.3 Discernibility -- 6.5.4 Lattice Reduction and Integer Least Squares -- 6.5.4.1 Branch-and-Bound Approach -- 6.5.4.2 Finke-Pohst Algorithm -- 6.5.4.3 Lattice Reduction Algorithms -- 6.5.4.4 Other Searching Strategies -- 6.5.4.5 Connection Between LAMBDA and LLL Methods -- 6.6 Network-Supported Positioning -- 6.6.1 PPP -- 6.6.2 CORS -- 6.6.2.1 Differential Phase and Pseudorange Corrections -- 6.6.2.2 RTK -- 6.6.3 PPP-RTK -- 6.6.3.1 Single-Frequency Solution -- 6.6.3.2 Dual-Frequency Solutions -- 6.6.3.3 Across-Satellite Differencing -- 6.7 Triple-Frequency Solutions -- 6.7.1 Single-Step Position Solution -- 6.7.2 Geometry-Free TCAR -- 6.7.2.1 Resolving EWL Ambiguity -- 6.7.2.2 Resolving the WL Ambiguity -- 6.7.2.3 Resolving the NL Ambiguity -- 6.7.3 Geometry-Based TCAR -- 6.7.4 Integrated TCAR -- 6.7.5 Positioning with Resolved Wide Lanes -- 6.8 Summary -- Chapter 7 Real-Time Kinematics Relative Positioning -- 7.1 Multisystem Considerations -- 7.2 Undifferenced and Across-Receiver Difference Observations -- 7.3 Linearization and Hardware Bias Parameterization -- 7.4 RTK Algorithm for Static and Short Baselines -- 7.4.1 Illustrative Example -- 7.5 RTK Algorithm for Kinematic Rovers and Short Baselines -- 7.5.1 Illustrative Example -- 7.6 RTK Algorithm with Dynamic Model and Short Baselines -- 7.6.1 Illustrative Example -- 7.7 RTK Algorithm with Dynamic Model and Long Baselines -- 7.7.1 Illustrative Example -- 7.8 RTK Algorithms with Changing Number of Signals -- 7.9 Cycle Slip Detection and Isolation -- 7.9.1 Solutions Based on Signal Redundancy -- 7.10 Across-Receiver Ambiguity Fixing -- 7.10.1 Illustrative Example -- 7.11 Software Implementation -- Chapter 8 Troposphere and Ionosphere -- 8.1 Overview. 8.2 Tropospheric Refraction and Delay -- 8.2.1 Zenith Delay Functions -- 8.2.2 Mapping Functions -- 8.2.3 Precipitable Water Vapor -- 8.3 Troposphere Absorption -- 8.3.1 The Radiative Transfer Equation -- 8.3.2 Absorption Line Profiles -- 8.3.3 General Statistical Retrieval -- 8.3.4 Calibration of WVR -- 8.4 Ionospheric Refraction -- 8.4.1 Index of Ionospheric Refraction -- 8.4.2 Ionospheric Function and Cycle Slips -- 8.4.3 Single-Layer Ionospheric Mapping Function -- 8.4.4 VTEC from Ground Observations -- 8.4.5 Global Ionospheric Maps -- 8.4.5.1 IGS GIMs -- 8.4.5.2 International Reference Ionosphere -- 8.4.5.3 GPS Broadcast Ionospheric Model -- 8.4.5.4 NeQuick Model -- 8.4.5.5 Transmission to the User -- Chapter 9 GNSS Receiver Antennas -- 9.1 Elements of Electromagnetic Fields and Electromagnetic Waves -- 9.1.1 Electromagnetic Field -- 9.1.2 Plane Electromagnetic Wave -- 9.1.3 Complex Notations and Plane Wave in Lossy Media -- 9.1.4 Radiation and Spherical Waves -- 9.1.5 Receiving Mode -- 9.1.6 Polarization of Electromagnetic Waves -- 9.1.7 The dB Scale -- 9.2 Antenna Pattern and Gain -- 9.2.1 Receiving GNSS Antenna Pattern and Reference Station and Rover Antennas -- 9.2.2 Directivity -- 9.2.3 Polarization Properties of the Receiving GNSS Antenna -- 9.2.4 Antenna Gain -- 9.2.5 Antenna Effective Area -- 9.3 Phase Center -- 9.3.1 Antenna Phase Pattern -- 9.3.2 Phase Center Offset and Variations -- 9.3.3 Antenna Calibrations -- 9.3.4 Group Delay Pattern -- 9.4 Diffraction and Multipath -- 9.4.1 Diffraction Phenomena -- 9.4.2 General Characterization of Carrier Phase Multipath -- 9.4.3 Specular Reflections -- 9.4.4 Antenna Down-Up Ratio -- 9.4.5 PCV and PCO Errors Due to Ground Multipath -- 9.5 Transmission Lines -- 9.5.1 Transmission Line Basics -- 9.5.2 Antenna Frequency Response -- 9.5.3 Cable Losses -- 9.6 Signal-to-Noise Ratio. 9.6.1 Noise Temperature.

9781119018285


Artificial satellites in surveying.


Electronic books.

TA595.5 -- .L45 2015eb

526.9/82