Bourgain, Jean.

Green's Function Estimates for Lattice Schrödinger Operators and Applications. (AM-158). - 1st ed. - 1 online resource (184 pages) - Annals of Mathematics Studies ; v.158 . - Annals of Mathematics Studies .

Cover -- Title -- Copyright -- Contents -- Acknowledgment -- Chapter 1. Introduction -- Chapter 2. Transfer Matrix and Lyapounov Exponent -- Chapter 3. Herman's Subharmonicity Method -- Chapter 4. Estimates on Subharmonic Functions -- Chapter 5. LDT for Shift Model -- Chapter 6. Avalanche Principle in SL2(R) -- Chapter 7. Consequences for LyapounovExponent, IDS, and Green's Function -- Chapter 8. Refinements -- Chapter 9. Some Facts about Semialgebraic Sets -- Chapter 10. Localization -- Chapter 11. Generalization to Certain Long-Range Models -- Chapter 12. Lyapounov Exponent and Spectrum -- Chapter 13. Point Spectrum in Multifrequency Models at Small Disorder -- Chapter 14. A Matrix-Valued Cartan-Type Theorem -- Chapter 15. Application to Jacobi Matrices Associated with Skew Shifts -- Chapter 16. Application to the Kicked Rotor Problem -- Chapter 17. Quasi-Periodic Localization on the Z^d-lattice (d > -- 1) -- Chapter 18. An Approach to Melnikov's Theorem on Persistency of Non-resonant Lower Dimension Tori -- Chapter 19. Application to the Construction of Quasi-Periodic Solutions of Nonlinear Schrödinger Equations -- Chapter 20. Construction of Quasi-Periodic Solutions of Nonlinear Wave Equations -- Appendix.

No detailed description available for "Green's Function Estimates for Lattice Schrödinger Operators and Applications. (AM-158)".

9781400837144


Schrodinger operator.
Green's functions.
Hamiltonian systems.
Evolution equations.


Electronic books.

QC174.17.S3 B68 2005

515.3/9