TY - BOOK AU - El-Sayed,Ahmed F. TI - Aircraft Propulsion and Gas Turbine Engines SN - 9781466595170 AV - TL709 .E473 2017 U1 - 629.134/353 PY - 2017/// CY - Milton PB - Taylor & Francis Group KW - Airplanes-Turbojet engines KW - Electronic books N1 - Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- What's New in the Second Edition: Chapter-by-Chapter Content Changes -- New Chapters -- Supplements -- Author -- Section I: Aero Engines and Gas Turbines -- Chapter 1: History and Classifications of Aeroengines -- 1.1 Pre-Jet Engine History -- 1.1.1 Early Activities in Egypt and China -- 1.1.2 Leonardo da Vinci -- 1.1.3 Branca's Stamping Mill -- 1.1.4 Newton's Steam Wagon -- 1.1.5 Barber's Gas Turbine -- 1.1.6 Miscellaneous Aero-Vehicle's Activities in the Eighteenth and Nineteenth Centuries -- 1.1.7 Wright Brothers -- 1.1.8 Significant Events up to the 1940s -- 1.1.8.1 Aero-Vehicle Activities -- 1.1.8.2 Reciprocating Engines -- 1.2 Jet Engines -- 1.2.1 Jet Engines Inventors: Dr. Hans von Ohain and Sir Frank Whittle -- 1.2.1.1 Sir Frank Whittle (1907-1996) -- 1.2.1.2 Dr. Hans von Ohain (1911-1998) -- 1.2.2 Turbojet Engines -- 1.2.3 Turboprop and Turboshaft Engines -- 1.2.4 Turbofan Engines -- 1.2.5 Propfan Engine -- 1.2.6 Pulsejet, Ramjet, and Scramjet Engines -- 1.2.6.1 Pulsejet Engine -- 1.2.6.2 Ramjet and Scramjet Engines -- 1.2.7 Industrial Gas Turbine Engines -- 1.3 Classifications of Aerospace Engines -- 1.4 Classification of Jet Engines -- 1.4.1 Ramjet -- 1.4.2 Pulsejet -- 1.4.3 Scramjet -- 1.4.4 Turboramjet -- 1.4.5 Turborocket -- 1.5 Classification of Gas Turbine Engines -- 1.5.1 Turbojet Engines -- 1.5.2 Turboprop -- 1.5.3 Turboshaft -- 1.5.4 Turbofan Engines -- 1.5.5 Propfan Engines -- 1.5.6 Advanced Ducted Fan -- 1.6 Industrial Gas Turbines -- 1.7 Non-Airbreathing Engines -- 1.8 The Future of Aircraft and Powerplant Industries -- 1.8.1 Closure -- Problems -- References -- Chapter 2: Performance Parameters of Jet Engines -- 2.1 Introduction -- 2.2 Thrust Force -- 2.3 Factors Affecting Thrust -- 2.3.1 Jet Nozzle -- 2.3.2 Airspeed -- 2.3.3 Mass Airflow; 2.3.4 Altitude -- 2.3.5 Ram Effect -- 2.4 Engine Performance Parameters -- 2.4.1 Propulsive Efficiency -- 2.4.2 Thermal Efficiency -- 2.4.2.1 Ramjet, Scramjet, Turbojet, and Turbofan Engines -- 2.4.2.2 Turboprop and Turboshaft Engines -- 2.4.3 Propeller Efficiency -- 2.4.4 Overall Efficiency -- 2.4.5 Takeoff Thrust -- 2.4.6 Specific Fuel Consumption -- 2.4.6.1 Ramjet, Turbojet, and Turbofan Engines -- 2.4.6.2 Turboprop Engines -- 2.4.7 Aircraft Range -- 2.4.8 Range Factor -- 2.4.9 Endurance Factor -- 2.4.10 Specific Impulse -- 2.4.11 Mission Segment Weight Fraction -- 2.4.12 Route Planning -- 2.4.12.1 Point of No Return -- 2.4.12.2 Critical Point -- Problems -- References -- Chapter 3: Pulsejet and Ramjet Engines -- 3.1 Introduction -- 3.2 Pulsejet Engines -- 3.2.1 Introduction -- 3.2.2 Valved Pulsejet -- 3.2.3 Valveless Pulsejet -- 3.2.4 Pulsating Nature of Flow Parameters in Pulsejet Engines -- 3.2.5 Pulse Detonation Engine -- 3.3 Ramjet Engines -- 3.3.1 Introduction -- 3.3.2 Classifications of Ramjet Engines -- 3.3.2.1 Subsonic-Supersonic Types -- 3.3.2.2 Fixed Geometry-Variable Geometry Types -- 3.3.2.3 Liquid-Fueled and Solid-Fueled Types -- 3.3.3 Ideal Ramjet -- 3.3.3.1 Real Cycle -- 3.4 Case Study -- 3.5 Nuclear Ramjet -- 3.6 Double-Throat Ramjet Engine -- 3.7 Solid-Fueled Ramjet Engine -- 3.8 Summary and Governing Equations for Shock Waves and Isentropic Flow -- 3.8.1 Summary (Figure 3.46) -- 3.8.2 Normal Shock Wave Relations -- 3.8.3 Oblique Shock Wave Relations -- 3.8.4 Rayleigh Flow Equations -- 3.8.5 Isentropic Relation -- Problems -- References -- Chapter 4: Turbojet Engine -- 4.1 Introduction -- 4.2 Single Spool -- 4.2.1 Examples of Engines -- 4.2.2 Thermodynamic Analysis -- 4.2.3 Ideal Case -- 4.2.4 Actual Case -- 4.2.4.1 General Description -- 4.2.4.2 Governing Equations; 4.2.5 Comparison between Operative and Inoperative Afterburner -- 4.3 Two-Spool Engine -- 4.3.1 Non-Afterburning Engine -- 4.3.1.1 Example of Engines -- 4.3.1.2 Thermodynamic Analysis -- 4.3.2 Afterburning Engine -- 4.3.2.1 Examples for Two-Spool Afterburning Turbojet Engines -- 4.3.2.2 Thermodynamic Analysis -- 4.4 Statistical Analysis -- 4.5 Thrust Augmentation -- 4.5.1 Water Injection -- 4.5.2 Afterburning -- 4.5.3 Pressure Loss in an Afterburning Engine -- 4.6 Supersonic Turbojet -- 4.7 Optimization of the Turbojet Cycle -- 4.8 Micro Turbojet -- Problems -- References -- Chapter 5: Turbofan Engines -- 5.1 Introduction -- 5.2 Forward Fan Unmixed Single-Spool Configuration -- 5.3 Forward Fan Unmixed Two-Spool Engines -- 5.3.1 The Fan and Low-Pressure Compressor (LPC) on One Shaft -- 5.3.2 Fan Driven by the LPT and the Compressor Driven by the HPT -- 5.3.3 A Geared Fan Driven by the LPT and the Compressor Driven by the HPT -- 5.3.3.1 Examples for This Configuration -- 5.4 Forward Fan Unmixed Three-Spool Engine -- 5.4.1 Examples for Three-Spool Engines -- 5.5 Forward Fan Mixed-Flow Engine -- 5.5.1 Mixed-Flow Two-Spool Engine -- 5.6 Mixed Turbofan with Afterburner -- 5.6.1 Introduction -- 5.6.2 Ideal Cycle -- 5.6.3 Real Cycle -- 5.7 Aft-Fan -- 5.8 VTOL and STOL (V/STOL) -- 5.8.1 Swiveling Nozzles -- 5.8.2 Switch-in Deflector System -- 5.8.2.1 Cruise -- 5.8.2.2 Takeoff or Lift Thrust -- 5.9 Performance Analysis -- 5.10 Geared Turbofan Engines -- 5.11 Summary -- Problems -- References -- Chapter 6: Shaft Engines: Internal Combustion, Turboprop, Turboshaft, and Propfan Engines -- 6.1 Introduction -- 6.2 Internal Combustion Engines -- 6.2.1 Introduction -- 6.2.2 Types of Aero Piston Engine -- 6.2.2.1 Rotary Engines -- 6.2.2.1.1 Conventional Types -- 6.2.2.1.2 Wankel Engines -- 6.2.2.2 Reciprocating Engines -- 6.2.2.2.1 In-Line Engines; 6.2.2.2.2 Horizontally Opposed Engines -- 6.2.2.2.3 V-Type Engines -- 6.2.2.2.4 X-Type Engines -- 6.2.2.2.5 H-Type Engine -- 6.2.2.2.6 Radial Type Engine -- 6.2.2.3 Supercharging and Turbocharging Engines -- 6.2.3 Aerodynamics and Thermodynamics of the Reciprocating Internal Combustion Engine -- 6.2.3.1 Terminology for the Four-Stroke Engine -- 6.2.3.2 Air-Standard Analysis -- 6.2.3.3 Engine Thermodynamics Cycles -- 6.2.3.3.1 Four-Stroke Spark Ignition Otto Cycle Engines at WOT -- 6.2.3.3.2 Two-Stroke Spark Ignition (Otto Cycle) Engines -- 6.2.3.3.3 Four Stroke Diesel Engines -- 6.2.3.3.4 Two-Stroke Diesel Engines -- 6.2.3.3.5 Summary for Piston Engines Used in Land, Sea, and Air applications -- 6.2.3.4 Superchargers/Turbochargers -- 6.3 Aircraft Propellers -- 6.3.1 Introduction -- 6.3.2 Classifications -- 6.3.2.1 Source of Power -- 6.3.2.2 Material -- 6.3.2.3 Coupling to the Output Shaft -- 6.3.2.4 Control -- 6.3.2.5 Number of Propellers Coupled to Each Engine -- 6.3.2.6 Direction of Rotation -- 6.3.2.7 Propulsion Method -- 6.3.2.8 Number of Blades -- 6.3.3 Aerodynamic Design -- 6.3.3.1 Axial Momentum (or Actuator Disk) Theory -- 6.3.3.2 Modified Momentum or Simple Vortex Model -- 6.3.3.3 Blade Element Considerations -- 6.3.3.4 Dimensionless Parameters -- 6.3.3.5 Typical Propeller Performance -- 6.4 Turboprop Engines -- 6.4.1 Introduction to Turboprop Engines -- 6.4.2 Classification of Turboprop Engines -- 6.4.3 Thermodynamics Analysis of Turboprop Engines -- 6.4.3.1 Single-Spool Turboprop -- 6.4.3.2 Two-Spool Turboprop -- 6.4.4 Analogy with Turbofan Engines -- 6.4.5 Equivalent Engine Power -- 6.4.5.1 Static Condition -- 6.4.5.2 Flight Operation -- 6.4.6 Fuel Consumption -- 6.4.7 Turboprop Installation -- 6.4.8 Details of Some Engines -- 6.4.9 Performance Analysis -- 6.4.10 Comparison between Turbojet, Turbofan and Turboprop Engines; 6.5 Turboshaft Engines -- 6.5.1 Power Generated by Turboshaft Engines -- 6.5.1.1 Single-Spool Turboshaft -- 6.5.1.2 Double-Spool Turboshaft -- 6.5.2 Examples for Turboshaft Engines -- 6.6 Propfan Engines -- 6.7 Conclusion -- Problems -- References -- Chapter 7: High-Speed Supersonic and Hypersonic Engines -- 7.1 Introduction -- 7.2 Supersonic Aircraft and Programs -- 7.2.1 Anglo-French Activities -- 7.2.1.1 Concorde -- 7.2.1.2 BAe-Aerospatiale AST -- 7.2.2 Russian Activities -- 7.2.2.1 Tupolev TU-144 -- 7.2.3 The U.S. Activities -- 7.3 The Future of Commercial Supersonic Technology -- 7.4 Technology Challenges of Future Flight -- 7.5 High-Speed Supersonic and Hypersonic Propulsion -- 7.5.1 Introduction -- 7.5.2 Hybrid-Cycle Engine -- 7.6 Turboramjet Engine -- 7.7 Wraparound Turboramjet -- 7.7.1 Operation as a Turbojet Engine -- 7.7.2 Operation as a Ramjet Engine -- 7.8 Over/Under Turboramjet -- 7.8.1 Turbojet Mode -- 7.8.2 Dual Mode -- 7.8.3 Ramjet Mode -- 7.9 Turboramjet Performance -- 7.9.1 Turbojet Mode -- 7.9.2 Ramjet Mode -- 7.9.3 Dual Mode -- 7.10 Case Study -- 7.11 Examples for Turboramjet Engines -- 7.12 Hypersonic Flight -- 7.12.1 History of Hypersonic Vehicles -- 7.12.2 Hypersonic Commercial Transport -- 7.12.3 Military Applications -- 7.13 Scramjet Engines -- 7.13.1 Introduction -- 7.13.2 Thermodynamics -- 7.14 Intake of a Scramjet Engine -- 7.14.1 Case Study -- 7.15 Combustion Chamber -- 7.15.1 Fuel Mixing in Parallel Stream -- 7.15.1.1 Ramp Injectors -- 7.15.2 Fuel Mixing in Normal Stream -- 7.16 Nozzle -- 7.17 Case Study -- 7.18 Dual-Mode Combustion Engine (Dual Ram-Scramjet) -- 7.18.1 Aero-Thermodynamics of Dual-Mode Scramjet -- Problems -- References -- Chapter 8: Industrial Gas Turbines -- 8.1 Introduction -- 8.2 Categories of Gas Turbines -- 8.3 Types of Industrial Gas Turbines -- 8.4 Single-Shaft Engine; 8.4.1 Single Compressor and Turbine N2 - Aircraft Propulsion and Gas Turbine Engines, Second Edition builds upon the success of the book's first edition, with the addition of three major topic areas: Piston Engines with integrated propeller coverage; Pump Technologies; and Rocket Propulsion UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5475444 ER -