Houze Jr., Robert A.

Cloud Dynamics. - 2nd ed. - 1 online resource (457 pages) - Issn Series ; v.Volume 104 . - Issn Series .

Front Cover -- Cloud Dynamics -- Copyright -- Dedication -- Contents -- Preface -- List of Symbols -- Part I: Fundamentals -- Chapter 1: Types of Clouds in Earth´s Atmosphere -- 1.1. Atmospheric Structure and Scales -- 1.2. Cloud Types Identified Visually -- 1.2.1. Genera, Species, and Étages -- 1.2.2. Low Clouds -- 1.2.3. Middle Clouds -- 1.2.4. High Clouds -- 1.2.5. Orographic Clouds -- 1.2.6. Noctilucent Clouds -- 1.3. Precipitating Cloud Systems -- 1.3.1. Mesoscale Convective Systems -- 1.3.2. Tropical Cyclones -- 1.3.3. Extratropical Cyclones -- 1.4. Satellite Cloud Climatology -- Chapter 2: Atmospheric Dynamics -- 2.1. The Basic Equations2 -- 2.1.1. Equation of Motion -- 2.1.2. Equation of State -- 2.1.3. Thermodynamic Equation -- 2.1.4. Mass Continuity -- 2.1.5. Water Continuity -- 2.1.6. The Full Set of Equations -- 2.2. Balanced Flow -- 2.2.1. Quasigeostrophic Motion -- 2.2.2. Semigeostrophic Motions -- 2.2.3. Gradient-Wind Balance -- 2.2.4. Hydrostatic Balance -- 2.2.5. Thermal Wind -- 2.2.6. Cyclostrophic Balance -- 2.3. Anelastic and Boussinesq approximations -- 2.4. Vorticity -- 2.5. Potential Vorticity -- 2.6. Perturbation Forms of the Equations -- 2.6.1. Average and Perturbation Forms of the Equation of State and Continuity Equation -- 2.6.2. Flux Forms and Linearization of the Thermodynamic and Water-Continuity Equations -- 2.6.3. Flux Form and Linearization of the Equation of Motion -- 2.6.4. Eddy Kinetic Energy Equation -- 2.7. Oscillations and Waves -- 2.7.1. Buoyancy Oscillations -- 2.7.2. Gravity Waves -- 2.7.3. Inertial Oscillations -- 2.7.4. Inertio-Gravity Waves -- 2.8. Adjustment to Geostrophic and Gradient Balance -- 2.9. Instabilities -- 2.9.1. Buoyant, Inertial, and Symmetric Instabilities -- 2.9.2. Kelvin-Helmholtz Instability -- 2.9.3. Rayleigh-Bénard Instability -- 2.10. Representation of Eddy Fluxes. 2.10.1. K-Theory -- 2.10.2. Higher Order Closure -- 2.10.3. Large Eddy Simulation -- 2.11. The Planetary Boundary Layer -- 2.11.1. The Ekman Layer -- 2.11.2. Boundary-Layer Stability -- 2.11.3. The Surface Layer -- Chapter 3: Cloud Microphysics -- 3.1. Microphysics of Warm Clouds -- 3.1.1. Nucleation of Drops -- 3.1.2. Condensation and Evaporation -- 3.1.3. Fallspeeds of Drops -- 3.1.4. Continuous Collection -- 3.1.5. Stochastic Collection -- 3.1.6. Spontaneous and Collisional Breakup of Drops and Modification of the Stochastic Collection Formulation -- 3.2. Microphysics of Cold Clouds -- 3.2.1. Homogeneous Nucleation of Ice Particles -- 3.2.2. Heterogeneous Nucleation and Other Processes Forming Small Ice Particles in Clouds -- 3.2.3. Vapor Deposition and Sublimation -- 3.2.4. Aggregation and Riming -- 3.2.5. Hail -- 3.2.6. Ice Enhancement -- 3.2.7. Fallspeeds of Ice Particles -- 3.2.8. Melting -- 3.3. Types of Microphysical Processes and Categories of Water Substance in Clouds -- 3.4. Water-Continuity Equations -- 3.5. Bin Water-Continuity Models -- 3.5.1. General -- 3.5.2. Bin Modeling of Warm Clouds -- 3.5.3. Bin Modeling of Cold Clouds -- 3.6. Bulk Water-Continuity Models -- 3.6.1. The Classic Kessler Approach to Bulk Water-Continuity Modeling of Warm Precipitating Clouds -- 3.6.2. Multimoment Bulk Water-Continuity Modeling of Warm Clouds -- 3.6.3. Bulk Modeling of Cold Clouds By Extending the Kessler Scheme -- 3.7. Water-Continuity Modeling of Cold Clouds Using Generalized Mass-Size and Area-Size Relations6565This section is base... -- Chapter 4: Remote Sensing of Clouds and Precipitation -- 4.1. Absorption, Scattering, and the Microwave Domain -- 4.2. Passive Microwave Sensing of Precipitation -- 4.3. Radar Sensing of Clouds and Precipitation -- 4.4. Radar Reflectivity from Returned Power -- 4.5. Radar Polarimetry. 4.5.1. Parameters Measured by Dual-Polarization Radar -- 4.5.2. Identification of Hydrometeor Type with Dual-Polarization Radar -- 4.6. Relating Radar Measurements to Hydrometeor Concentration, Precipitation, Fall Velocity, and Cloud-System Structure -- 4.6.1. Particle-Size Method -- 4.6.2. Rain-Gauge Method -- 4.6.3. Polarimetric Improvement of Rain Estimation27 -- 4.7. Estimating Areal Precipitation from Radar Data -- 4.8. Determining Cloud Morphology from Radar Data -- 4.9. Doppler Radar -- 4.9.1. Radial Velocity -- 4.9.2. Velocity and Range Folding -- 4.9.3. Vertical Incidence Observations -- 4.9.4. Range-Height Data -- 4.9.5. Velocity-Azimuth Display Method -- 4.9.6. Multiple-Doppler Synthesis -- 4.9.7. Retrieval of Thermodynamic and Microphysical Variables -- Part II: Phenomena -- Chapter 5: Clouds in Shallow Layers at Low, Middle, and High Levels -- 5.1. Fog and Stratus Occurring in a Boundary Layer Cooled from Below -- 5.1.1. General Considerations -- 5.1.2. Turbulent Mixing in Fog -- 5.1.3. Radiation Fog -- 5.1.4. Arctic Stratus and Stratocumulus -- 5.2. Stratocumulus Forming in Boundary Layers Heated from Below -- 5.2.1. Climatology -- 5.2.2. Conceptual Model of the Formation of a Cloud Topped Mixed Layer -- 5.2.3. Mathematical Modeling of Cloud Topped Mixed Layer Formation -- 5.2.4. Stratocumulus with Drizzle -- 5.2.5. Later Stages of the Stratocumulus Lifecycle -- 5.2.6. Cellular Structures and Patterns in Stratocumulus Fields -- 5.2.7. Boundary Layer Rolls and Cloud Streets -- 5.3. Altostratus and Altocumulus -- 5.3.1. Altostratus and Altocumulus Produced as Remnants of Other Clouds -- 5.3.2. Altocumulus as High Based Convective Clouds -- 5.3.3. Altostratus and Altocumulus as Shallow Layer Clouds Aloft -- 5.3.4. Ice Particle Generation By Altocumulus Elements -- 5.3.5. Interaction of Altocumulus and Lower Cloud Layers. 5.4. Cirriform Clouds -- 5.4.1. Nomenclature -- 5.4.2. Climatology and Origins of Cirriform Clouds -- 5.4.3. Microphysics, Vertical Air Motions, and Radiation in Cirriform Clouds -- 5.4.4. Small Cirriform Convective Elements-``Generating Cells´´ -- 5.4.5. Buoyant Anvil Dynamics -- 5.4.6. Radiative Destabilization and Shear Effects on a Layer of Cirriform Cloud -- 5.4.7. Mesoscale Circulation Induced By Radiative Heating of a Layer of Cirriform Cloud -- Chapter 6: Nimbostratus and the Separation of Convective and Stratiform Precipitation -- 6.1. Definition of Stratiform Precipitation and How It Differs from Convective Precipitation -- 6.2. The Contrasting Radar-Echo Structures of Stratiform and Convective Precipitation -- 6.3. Microphysical Observations in Nimbostratus and Implied Vertical Air Motions -- 6.4. Role of Convection in Regions of Stratiform Precipitation -- 6.5. Stratiform Precipitation with Shallow Overturning Convective Cells Aloft -- 6.6. Stratiform Precipitation Produced by Deep Convection -- 6.6.1. Particle Fountains and the Evolution of Deep Convective Cells into Nimbostratus -- 6.6.2. Stratiform Precipitation Produced by Discrete Redevelopment of Deep Convection -- 6.6.3. Stratiform Precipitation Produced by Convective Redevelopment in a Various Wind Shear Environments -- 6.6.4. Microphysics of the Stratiform Precipitation Associated with Deep Convective Clouds -- 6.7. Radiative Effects on Nimbostratus -- 6.8. Separation of Convective and Stratiform Precipitation -- Chapter 7: Basic Cumulus Dynamics -- 7.1. Buoyancy -- 7.2. The Pressure-Perturbation Field Associated with Buoyancy -- 7.3. Entrainment and Detrainment -- 7.3.1. General Considerations -- 7.3.2. Early Views of Mixing with the Cloud's Environment -- 7.3.3. More Realistic Views of Entrainment and Detrainment. 7.3.4. Effect of Entrainment on Buoyancy and Downward Motion Near Cloud Edge -- 7.3.5. Lateral Versus Cloud-Top Entrainment -- 7.3.6. Convective Cloud in a Fixed Column -- 7.3.7. Representation of Mixing in Multidimensional Models of Convective Clouds -- 7.3.8. Representation of Convective Clouds in Large Scale Models of the Atmosphere -- 7.4. Vorticity and Dynamic Pressure Perturbation Forces -- 7.4.1. The Vorticity Approach to Understanding Rotation and Dynamic Pressure in Convective Clouds -- 7.4.2. Horizontal Vorticity -- 7.4.3. Vertical Vorticity Introduced by Tilting of Environmental Horizontal Vorticity -- 7.4.4. Effects of Vortices on Entrainment and Pressure Perturbation -- Chapter 8: Cumulonimbus and Severe Storms -- 8.1. The Basic Cumulonimbus Cloud -- 8.2. Multicell Storms -- 8.3. Supercell Storms -- 8.4. Environmental Conditions Favoring Different Types of Deep Convective Storms16 -- 8.5. Supercell Dynamics21 -- 8.5.1. Storm Splitting and Propagation -- 8.5.2. Directional Shear in the Environment of the Cumulonimbus Cloud -- 8.5.3. Updraft Rotation -- 8.5.4. Helicity and the Strength of Supercell Updraft Rotation -- 8.5.5. Baroclinicity Associated with Downdrafts -- 8.5.6. The Three Sources of Rotation in a Supercell -- 8.6. Tornadogenesis in Supercell Storms -- 8.6.1. The Primary Factors Contributing to Tornado Formation in a Supercell -- 8.6.2. Occlusion Downdrafts, the Surface Mesoscyclone, and Vortex Breakdown -- 8.7. Ground Tracks of Supercell Tornadoes -- 8.8. Non-Supercell Tornadoes and Waterspouts -- 8.9. The Tornado -- 8.9.1. Observed Structure and Life Cycle of a Tornado36 -- 8.9.2. Vortex Dynamics39 -- 8.9.3. Vortex Breakdown -- 8.9.4. Multiple Vortex Tornadoes -- 8.10. Downbursts and Microbursts -- 8.10.1. Definitions and Descriptive Models -- 8.10.2. Effects of Microbursts on Aircraft. 8.10.3. Mechanisms Driving Microbursts.

9780080921464


Precipitation (Meteorology).


Electronic books.

QC921.6 .D95 H68 2014

551.576