Nonparametric Hypothesis Testing : Rank and Permutation Methods with Applications in R.
- 1st ed.
- 1 online resource (254 pages)
- Wiley Series in Probability and Statistics Series .
- Wiley Series in Probability and Statistics Series .
Intro -- Nonparametric Hypothesis Testing -- Contents -- Presentation of the book -- Preface -- Notation and abbreviations -- 1 One- and two-sample location problems, tests for symmetry and tests on a single distribution -- 1.1 Introduction -- 1.2 Nonparametric tests -- 1.2.1 Rank tests -- 1.2.2 Permutation tests and combination based tests -- 1.3 Univariate one-sample tests -- 1.3.1 The Kolmogorov goodness-of-fit test -- 1.3.2 A univariate permutation test for symmetry -- 1.4 Multivariate one-sample tests -- 1.4.1 Multivariate rank test for central tendency -- 1.4.2 Multivariate permutation test for symmetry -- 1.5 Univariate two-sample tests -- 1.5.1 The Wilcoxon (Mann-Whitney) test -- 1.5.2 Permutation test on central tendency -- 1.6 Multivariate two-sample tests -- 1.6.1 Multivariate tests based on rank -- 1.6.2 Multivariate permutation test on central tendency -- References -- 2 Comparing variability and distributions -- 2.1 Introduction -- 2.2 Comparing variability -- 2.2.1 The Ansari-Bradley test -- 2.2.2 The permutation Pan test -- 2.2.3 The permutation O'Brien test -- 2.3 Jointly comparing central tendency and variability -- 2.3.1 The Lepage test -- 2.3.2 The Cucconi test -- 2.4 Comparing distributions -- 2.4.1 The Kolmogorov-Smirnov test -- 2.4.2 The Cramér-von Mises test -- References -- 3 Comparing more than two samples -- 3.1 Introduction -- 3.2 One-way ANOVA layout -- 3.2.1 The Kruskal-Wallis test -- 3.2.2 Permutation ANOVA in the presence of one factor -- 3.2.3 The Mack-Wolfe test for umbrella alternatives -- 3.2.4 Permutation test for umbrella alternatives -- 3.3 Two-way ANOVA layout -- 3.3.1 The Friedman rank test for unreplicated block design -- 3.3.2 Permutation test for related samples -- 3.3.3 The Page test for ordered alternatives -- 3.3.4 Permutation analysis of variance in the presence of two factors. 3.4 Pairwise multiple comparisons -- 3.4.1 Rank-based multiple comparisons for the Kruskal-Wallis test -- 3.4.2 Permutation tests for multiple comparisons -- 3.5 Multivariate multisample tests -- 3.5.1 A multivariate multisample rank-based test -- 3.5.2 A multivariate multisample permutation test -- References -- 4 Paired samples and repeated measures -- 4.1 Introduction -- 4.2 Two-sample problems with paired data -- 4.2.1 The Wilcoxon signed rank test -- 4.2.2 A permutation test for paired samples -- 4.3 Repeated measures tests -- 4.3.1 Friedman rank test for repeated measures -- 4.3.2 A permutation test for repeated measures -- References -- 5 Tests for categorical data -- 5.1 Introduction -- 5.2 One-sample tests -- 5.2.1 Binomial test on one proportion -- 5.2.2 The McNemar test for paired data (or bivariate responses) with binary variables -- 5.2.3 Multivariate extension of the McNemar test -- 5.3 Two-sample tests on proportions or 2 x 2 contingency tables -- 5.3.1 The Fisher exact test -- 5.3.2 A permutation test for comparing two proportions -- 5.4 Tests for R x C contingency tables -- 5.4.1 The Anderson-Darling permutation test for R x C contingency tables -- 5.4.2 Permutation test on moments -- 5.4.3 The chi-square permutation test -- References -- 6 Testing for correlation and concordance -- 6.1 Introduction -- 6.2 Measuring correlation -- 6.3 Tests for independence -- 6.3.1 The Spearman test -- 6.3.2 The Kendall test -- 6.4 Tests for concordance -- 6.4.1 The Kendall-Babington Smith test -- 6.4.2 A permutation test for concordance -- References -- 7 Tests for heterogeneity -- 7.1 Introduction -- 7.2 Statistical heterogeneity -- 7.3 Dominance in heterogeneity -- 7.3.1 Geographical heterogeneity -- 7.3.2 Market segmentation -- 7.4 Two-sided and multisample test -- 7.4.1 Customer satisfaction -- 7.4.2 Heterogeneity as a measure of uncertainty. 7.4.3 Ethnic heterogeneity -- 7.4.4 Reliability analysis -- References -- Appendix A Selected critical values for the null distribution of the peak-known Mack-Wolfe statistic -- Appendix B Selected critical values for the null distribution of the peak-unknown Mack-Wolfe statistic -- Appendix C Selected upper-tail probabilities for the null distribution of the Page L statistic -- Appendix D R functions and codes -- Packages -- Other source files -- Index -- WILEY SERIES IN PROBABILITY AND STATISTICS -- EULA.