TY - BOOK AU - Sankir,Mehmet AU - Sankir,Nurdan Demirci TI - Hydrogen Storage Technologies T2 - Advances in Hydrogen Production and Storage (AHPS) Series SN - 9781119460626 AV - TP245.H9 .H937 2018 PY - 2018/// CY - Newark PB - John Wiley & Sons, Incorporated KW - Hydrogen-Storage KW - Electronic books N1 - Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part I: Chemical and Electrochemical Hydrogen Storage -- 1 Metal Hydride Hydrogen Compression Systems - Materials, Applications and Numerical Analysis -- 1.1 Introduction -- 1.2 Adoption of a Hydrogen-Based Economy -- 1.2.1 Climate Change and Pollution -- 1.2.2 Toward a Hydrogen-Based Future -- 1.2.3 Hydrogen Storage -- 1.2.3.1 Compressed Hydrogen Storage -- 1.2.3.2 Hydrogen Storage in Liquid Form -- 1.2.3.3 Solid-State Hydrogen Storage -- 1.3 Hydrogen Compression Technologies -- 1.3.1 Reciprocating Piston Compressor -- 1.3.2 Ionic Liquid Piston Compressor -- 1.3.3 Piston-Metal Diaphragm Compressor -- 1.3.4 Electrochemical Hydrogen Compressor -- 1.4 Metal Hydride Hydrogen Compressors (MHHC) -- 1.4.1 Operation of a Two-Stage MHHC -- 1.4.2 Metal Hydrides -- 1.4.3 Thermodynamic Analysis of the Metal Hydride Formation -- 1.4.3.1 Pressure-Composition-Temperature (P-c-T) Properties -- 1.4.3.2 Slope and Hysteresis -- 1.4.4 Material Challenges for MHHCs -- 1.4.4.1 AB5 Intermetallics -- 1.4.4.2 AB2 Intermetallics -- 1.4.4.3 TiFe-Based AB-Type Intermetallics -- 1.4.4.4 Vanadium-Based BCC Solid Solution Alloys -- 1.5 Numerical Analysis of a Multistage MHHC System -- 1.5.1 Assumptions -- 1.5.2 Physical Model and Geometries -- 1.5.3 Heat Equation -- 1.5.4 Hydrogen Mass Balance -- 1.5.5 Momentum Equation -- 1.5.6 Kinetic Expressions for the Hydrogenation and Dehydrogenation -- 1.5.7 Equilibrium Pressure -- 1.5.8 Coupled Mass and Energy Balance -- 1.5.9 Validation of the Numerical Model -- 1.5.10 Material Selection for a Three-Stage MHHC -- 1.5.11 Temperature Evolution of the Complete Three-Stage Compression Cycle -- 1.5.12 Pressure and Storage Capacity Evolution During the Complete Three-Stage Compression Cycle -- 1.5.13 Importance of the Number of Stages and Proper Selection -- 1.6 Conclusions; Acknowledgments -- Nomenclature -- References -- 2 Nitrogen-Based Hydrogen Storage Systems: A Detailed Overview -- 2.1 Introduction -- 2.2 Amide/Imide Systems -- 2.2.1 Single-Cation Amide/Imide Systems -- 2.2.1.1 Lithium Amide/Imide -- 2.2.1.2 Sodium Amide/Imide -- 2.2.1.3 Magnesium Amide/Imide -- 2.2.1.4 Calcium Amide/Imide -- 2.2.2 Double-Cation Amide/Imide Systems -- 2.2.2.1 Li-Na-N-H -- 2.2.2.2 Li-Mg-N-H -- 2.2.2.3 Other Double-Cation Amides/Imides -- 2.3 Ammonia (NH3) as Hydrogen Storage Media -- 2.3.1 NH3 Synthesis -- 2.3.1.1 Catalytic NH3 Synthesis Using Haber-Bosch Process -- 2.3.1.2 Alternative Routes for NH3 Synthesis -- 2.3.2 NH3 Solid-State Storage -- 2.3.2.1 Metal Ammine Salts -- 2.3.2.2 Ammine Metal Borohydride -- 2.3.3 NH3 Decomposition -- 2.3.4 Application of NH3 to Fuel Cell -- 2.4 Future Prospects -- References -- 3 Nanostructured Mg-Based Hydrogen Storage Materials: Synthesis and Properties -- 3.1 Introduction -- 3.2 Experimental Details -- 3.2.1 Synthesis of Metal Nanoparticles -- 3.2.2 Formation of the Nanostructured Hydrides and Alloys -- 3.2.3 Characterization and Measurements -- 3.3 Synthesis Results of the Nanostructured Samples -- 3.4 Hydrogen Absorption Kinetics -- 3.5 Hydrogen Storage Thermodynamics -- 3.6 Novel Mg-TM (TM=V, Zn, Al) Nanocomposites -- 3.6.1 Introduction -- 3.6.2 Structure and Morphology of Mg-TM Nanocomposites -- 3.6.3 Hydrogen Absorption Kinetics -- 3.6.4 Phase Evolution During Hydrogenation/ Dehydrogenation -- 3.6.5 Summary -- 3.7 Summary and Prospects -- Acknowledgments -- References -- 4 Hydrogen Storage in Ti/Zr-Based Amorphous and Quasicrystal Alloys -- 4.1 Introduction -- 4.2 Production of Ti/Zr-Based Amorphous and Quasicrystals Alloys -- 4.3 Hydrogen Storage in T-Zr-Based Amorphous Alloys -- 4.3.1 Gaseous Hydrogenation -- 4.3.2 Electrochemical Hydrogenation; 4.4 Hydrogen Storage in the Ti/Zr-Based Quasicrystal Alloys -- 4.4.1 Gaseous Hydrogenation -- 4.4.2 Electrochemical Hydrogenation -- 4.5 Comparison of Amorphous and Quasicrystal Phases on the Hydrogen Properties -- 4.6 Conclusions -- References -- 5 Electrochemical Method of Hydrogenation/Dehydrogenation of Metal Hydrides -- 5.1 Introduction -- 5.2 Electrochemical Method of Hydrogenation of Metal Hydrides -- 5.2.1 Hydrogen Accumulation in Electrodes of Cadmium-Nickel Batteries Based on Electrochemical Method -- 5.2.2 Hydrogen Accumulation in Sintered Nickel Matrix of Oxide-Nickel Electrode -- 5.2.2.1 Active Substance of Oxide-Nickel Electrodes -- 5.2.2.2 Sintered Nickel Matrices of Oxide-Nickel Electrodes -- 5.3 Electrochemical Method of Dehydrogenation of Metal Hydrides -- 5.3.1 Introduction -- 5.3.2 Thermal Runaway as the New Method of Hydrogen Desorption from Hydrides -- 5.3.2.1 Thermo-Chemical Method of Hydrogen Desorption -- 5.3.2.2 Thermal Runaway: A New Method of Hydrogen Desorption from Metal Hydrides -- 5.4 Discussion -- 5.5 Conclusions -- References -- Part II: Carbon-Based Materials For Hydrogen Storage -- 6 Activated Carbon for Hydrogen Storage Obtained from Agro-Industrial Waste -- 6.1 Introduction -- 6.2 Experimental -- 6.3 Results and Discussion -- 6.4 Conclusions -- Acknowledgments -- References -- 7 Carbonaceous Materials in Hydrogen Storage -- 7.1 Introduction -- 7.2 Materials Consisting of Only Carbon Atoms -- 7.2.1 Graphite -- 7.2.2 Carbon Nanofibers -- 7.2.3 Carbon Nanostructures -- 7.2.4 Graphene -- 7.2.5 Carbon Nanotubes (CNTs) and Carbon Multi-Walled Nanotubes (MWCNTs) -- 7.3 Materials Containing Carbon and Other Light Elements -- 7.3.1 Polyaniline (PANI), Polypyrrole (PPy) and Polythiophene (PTh) -- 7.3.2 Hyperbranched Polyurea (P-Urea) and Poly(Amide-Amine) (PAMAM) -- 7.3.3 Microporous Polymers (PIMs); 7.3.4 Conjugated Microporous Polymers (CMPs) -- 7.3.5 Hyper-Cross-Linked Polymers (HCPs) -- 7.3.6 Porous Aromatic Frameworks (PAFs) -- 7.4 Composite Materials Made by Polymeric Matrix -- 7.4.1 Composite Poly(Amide-Amine) (PAMAM) -- 7.4.2 Polymer-Dispersed Metal Hydrides (PDMHs) -- 7.4.3 Mn Oxide Anchored to a Polymeric Matrix -- 7.5 Waste and Natural Materials -- 7.6 Conclusions -- References -- 8 Beneficial Effects of Graphene on Hydrogen Uptake and Release from Light Hydrogen Storage Materials -- 8.1 Introduction -- 8.2 General Aspects of Graphene -- 8.2.1 Synthesis of Graphene -- 8.2.1.1 Mechanical Cleavage of Highly Oriented Pyrolytic Graphite -- 8.2.1.2 Chemical Vapor Deposition -- 8.2.1.3 Chemical and Thermal Exfoliation of Graphite Oxide -- 8.2.1.4 Arc Discharge Method -- 8.2.2 Graphene as a Beneficial Additive for HS Materials -- 8.3 Beneficial Effect of Graphene: Key Results with Light Metal Hydrides (e.g., LiBH4, NaAlH4, MgH2) -- 8.3.1 Borohydrides (Tetrahydroborate) as HS Material -- 8.3.1.1 Effect of Graphene on Desorption Properties of LiBH4 -- 8.4 Alanates as HS Materials -- 8.4.1 Effect of Graphene on Sorption Behavior of NaAlH4 -- 8.4.2 Carbon Nanomaterial-Assisted Morphological Tuning of NaAlH4 to Improve Thermodynamics and Kinetics -- 8.5 Magnesium Hydride as HS Material -- 8.5.1 Catalytic Effect of Graphene on Sorption Behavior of Mg/MgH2 -- 8.5.2 Nanoparticles Templated Graphene as an Additive for MgH2 -- 8.6 Summary and Future Prospects -- Acknowledgment -- References -- 9 Hydrogen Adsorption on Nanotextured Carbon Materials -- 9.1 Introduction -- 9.1.1 Essential Features of Hydrogen Adsorption on Porous Carbon Materials -- 9.1.2 Measurement of the Hydrogen Storage Capacity -- 9.1.3 Excess, Absolute and Total Hydrogen Adsorption -- 9.2 Hydrogen Storage in Carbon Materials -- 9.2.1 Activated Carbons -- 9.2.2 Carbon Nanomaterials; 9.2.2.1 Graphene -- 9.2.2.2 Fullerenes -- 9.2.2.3 Carbon Nanotubes -- 9.2.2.4 Carbon Nanofibers -- 9.2.3 Templated Carbons -- 9.2.3.1 Zeolite- and Silica-Derived Carbons -- 9.2.3.2 MOFs-Derived Carbons -- 9.2.4 Other Carbon Materials -- 9.2.4.1 Carbide-Derived Carbons -- 9.2.4.2 Hybrid Carbon-MOF Materials -- 9.2.4.3 Hyper-Cross-Linked Polymers-Derived Carbons -- 9.2.4.4 Carbon Nanorods, Nanohorns and Nanospheres -- 9.2.4.5 Carbon Nitrides -- 9.2.4.6 Carbon Aerogels -- 9.2.4.7 Other Exotic Carbon Materials -- 9.3 Conclusion -- Acknowledgments -- References -- Appendix -- Index -- EULA UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5451946 ER -