Wireless Transceiver Design : Mastering the Design of Modern Wireless Equipment and Systems.
- 1st ed.
- 1 online resource (403 pages)
- New York Academy of Sciences Series .
- New York Academy of Sciences Series .
Intro -- Title Page -- Copyright Page -- Contents -- Foreword -- To the Instructor -- About the Authors -- Acknowledgment -- Chapter 1 Introduction -- 1.1 Radio Frequency Systems -- 1.1.1 Conceptual RF system -- 1.1.2 The frequency spectrum -- 1.1.3 Cellular concept -- 1.2 Detailed Overview of Wireless Systems and Technologies -- 1.2.1 System types -- 1.2.2 Wireless network architectures -- 1.2.2.1 Wireless Personal Area Network -- 1.2.3 Wireless local area network -- 1.2.3.1 Wi-Fi -- 1.2.3.2 Wi-Fi Direct -- 1.2.4 Wireless wide area network -- 1.2.4.1 Cellular Systems -- 1.2.4.2 The Concept of Frequency Reuse -- 1.2.5 Access methods -- 1.2.5.1 Multiple access -- 1.2.5.2 Frequency division multiple access -- 1.2.5.3 Time division multiple access -- 1.2.5.4 Code division multiple access -- 1.2.5.5 Why to spread? -- 1.2.6 Transmit-receive regimes -- 1.2.6.1 Wireless transmission regimes (or modes) -- 1.2.6.2 Simplex mode -- 1.2.6.3 Half-duplex mode -- 1.2.6.4 Full duplex mode -- 1.2.6.5 Duplexing -- 1.2.6.6 Frequency division duplex -- 1.2.6.7 Time division duplex -- Bibliography -- Chapter 2 Transceiver Architectures -- 2.1 Receiver Architectures -- 2.2 Superheterodyne Receiver -- 2.2.1 What is it and how it works -- 2.2.2 Pros and cons -- 2.2.3 Choosing the IF frequency -- 2.3 Direct Conversion Receiver -- 2.3.1 What is it and how it works -- 2.3.2 Pros and cons -- 2.4 Direct RF Sampling Receiver -- 2.4.1 What is it and how it works -- 2.4.1.1 Exercise: Determining sampling rate -- 2.4.2 Recovering I and Q channels in DRFS -- 2.4.2.1 Exercise: Recovering I and Q with bandwidth oversampling -- 2.5 Transmitter Architectures -- 2.6 Two Step Conversion Transmitter -- 2.6.1 What is it and how it works -- 2.6.2 Pros and cons -- 2.7 Direct Launch Transmitter -- 2.7.1 What is it and how it works -- 2.7.2 Pros and cons -- 2.8 Direct RF Sampling Transmitter. 2.9 Transceiver Architectures -- 2.10 Full Duplex/Half-duplex Architecture -- 2.11 Simplex Architecture -- 2.12 Solved Exercises -- 2.13 Theory Behind Equations -- 2.13.1 DRFS transmitter -- 2.13.2 Sampling theorem reminder -- Bibliography -- Chapter 3 Receiving Systems -- 3.1 Sensitivity -- 3.1.1 What is it and how it works -- 3.1.1.1 The definition of sensitivity -- 3.1.1.2 Exercise: Estimating a cell phone range -- 3.1.2 Interim sensitivity -- 3.1.2.1 Computing the noise factor of two cascaded stages -- 3.1.2.2 Exercise: Cascaded noise factor -- 3.1.2.3 Exercise: Computing SHR sensitivity -- 3.1.3 Measurement of sensitivity -- 3.1.3.1 Noise doubling approach -- 3.2 Co-channel Rejection -- 3.2.1 What is it and how it works -- 3.2.1.1 Definition of co-channel rejection -- 3.2.2 Measurement of co-channel rejection -- 3.3 Selectivity -- 3.3.1 What is it and how it works -- 3.3.1.1 Oscillator phase noise -- 3.3.1.2 Exercise: L (Δf) estimation -- 3.3.1.3 Selectivity mechanisms -- 3.3.1.4 The definition of selectivity -- 3.3.1.5 Exercise: DCR selectivity -- 3.3.2 Measurement of selectivity -- 3.4 Blocking -- 3.4.1 What is it and how it works -- 3.4.1.1 The definition of blocking -- 3.4.1.2 Exercise: Blocking-free distance -- 3.4.2 Measurement of blocking -- 3.5 Intermodulation Rejection -- 3.5.1 What is it and how it works -- 3.5.1.1 The definition of intermodulation -- 3.5.1.2 Effect of added gain (or loss) -- 3.5.1.3 Exercise: Intermodulation -- 3.5.2 Measurement of intermodulation -- 3.6 Image Rejection -- 3.6.1 What is it and how it works -- 3.6.1.1 The definition of image rejection -- 3.6.1.2 Exercise: IR and front filter -- 3.6.2 Measurement of image rejection -- 3.7 Half-IF Rejection -- 3.7.1 What is it and how it works -- 3.7.1.1 The definition of half-IF rejection -- 3.7.1.2 Exercise: HIFR and front filter. 3.7.2 Measurement of half-IF rejection -- 3.8 Dynamic Range -- 3.8.1 What is it and how it works -- 3.8.1.1 The definition of dynamic range -- 3.8.2 Measurement of dynamic range -- 3.9 Duplex Desense -- 3.9.1 What is it and how it works -- 3.9.1.1 The definition of duplex desense -- 3.9.1.2 Exercise: Required T-R attenuation to keep D ≤ 3 dB -- 3.9.2 Measurement of duplex desense -- 3.10 Other Duplex Spurs -- 3.10.1 What they are and how they work -- 3.10.1.1 Duplex image rejection -- 3.10.1.2 Half duplex spur -- 3.10.1.3 Phantom duplex spur -- 3.11 Other Receiver Interferences -- 3.11.1 What they are and how they work -- 3.11.1.1 Self quieters -- 3.11.1.2 Able-baker spurs -- 3.11.1.3 Doppler blocking -- 3.11.1.4 Second-order distortion -- 3.11.1.5 Spurious free dynamic range -- 3.12 Solved Exercises -- 3.13 Theory Behind Equations -- 3.13.1 Sensitivity -- 3.13.2 Co-channel rejection -- 3.13.3 Selectivity -- 3.13.4 Intermodulation -- 3.13.5 Image rejection -- 3.13.6 Half-IF rejection -- 3.13.7 Duplexer mechanisms -- 3.13.7.1 Isolation mechanism -- 3.13.7.2 Noise attenuation mechanism -- 3.13.8 Duplex desense -- 3.14 Extension to Direct RF Sampling Receivers -- 3.14.1 ADC noise factor -- 3.14.1.1 Exercise: Computing ADC noise floor and noise figure -- 3.14.1.2 Exercise: Computing DRFS sensitivity -- 3.14.2 SNR, selectivity, and blocking in a DRFS receiver -- 3.14.2.1 SNR -- 3.14.2.2 Selectivity and blocking -- 3.14.2.3 Exercise: DRFS blocking -- 3.14.2.4 IMR3 -- 3.14.2.5 Exercise: Estimating IP3i of an ADC -- 3.14.3 Reminder on quantization noise -- Bibliography -- Chapter 4 Transmitting Systems -- 4.1 Peak to Average Power Ratio -- 4.1.1 What is it and how it works -- 4.1.1.1 Exercise: PAPR of unfiltered 16 QAM -- 4.1.2 Measurement of PAPR -- 4.2 Nonlinearity in RF Power Amplifiers -- 4.2.1 What is it and how it works. 4.2.2 Third-order dominated PA behavior -- 4.2.2.1 Exercise: Computation of third-order dominated PA coefficients -- 4.2.3 Fifth-order dominated PA behavior -- 4.2.3.1 Exercise: computation of fifth-order dominated PA coefficients -- 4.2.4 In-band spectral picture of PA output -- 4.2.5 Description of PA simulation methodology -- 4.2.5.1 The input signal v(t) -- 4.2.5.2 The output signal V[v(t)] -- 4.2.5.3 The input and output spectral picture -- 4.2.6 N-th order intermodulation distortion -- 4.2.6.1 Exercise: Coefficient-based versus SPICE simulation of spectral re-growth -- 4.2.6.2 Laboratory measurement of IMDN -- 4.2.7 N-th order input intercept point -- 4.2.7.1 Exercise: Estimating IMDN from IPNi -- 4.2.7.2 Exercise: Rule of thumb -- 4.2.7.3 Exercise: IPNi using voltages -- 4.3 Transmitter Specifications -- 4.3.1 Spectral mask -- 4.3.2 Error vector magnitude -- 4.3.2.1 Other causes of EVM degradation -- 4.3.3 Adjacent coupled power ratio -- 4.3.4 PA efficiency -- 4.3.5 Transmitter transients -- 4.3.5.1 Attack time -- 4.3.5.2 Frequency shift upon keying -- 4.3.6 Radiated emission -- 4.3.7 Conducted spurs -- 4.4 Enhancement Techniques -- 4.4.1 Linearization techniques -- 4.4.1.1 Cartesian feedback -- 4.4.1.2 Feed-forward -- 4.4.1.3 Pre-distortion -- 4.4.2 Envelope-tracking supply -- 4.5 Solved Exercises -- 4.6 Theory Behind Equations -- 4.6.1 Computation of PAPR for quasi-static RF signals -- 4.6.2 Analytic models for PA nonlinearity -- 4.6.3 Effects of PA nonlinearity on digital modulation -- 4.6.4 Effects of PA nonlinearity on spectral shape -- 4.6.5 Characterization of PA nonlinearity -- 4.6.5.1 N-th order intermodulation distortion -- 4.6.5.2 N-th order input intercept point -- Bibliography -- Chapter 5 Synthesizers -- 5.1 Integer-N Synthesizer -- 5.1.1 What is it and how it works -- 5.1.1.1 The lock-up mechanism -- 5.1.1.2 Lock-up time. 5.1.1.3 Exercise: Estimating integer-N lock time -- 5.1.1.4 Something more on reference spurs and pre-integration capacitor -- 5.1.1.5 Exercise: Estimating reference spurs attenuation -- 5.1.1.6 Something more on phase-frequency detector modes -- 5.2 Fractional-N Synthesizer -- 5.2.1 What is it and how it works -- 5.2.1.1 Exercise: Estimating fractional-N lock time -- 5.2.2 Example: Dual-count fractional-N -- 5.3 Direct Digital Synthesizer -- 5.3.1 What is it and how it works -- 5.3.1.1 Exercise: Basic DDS design -- 5.4 Integer-N/DDS Hybrid Synthesizer -- 5.4.1 What is it and how it works -- 5.5 Solved Exercises -- 5.6 Theory Behind Equations -- 5.6.1 Integer-N analysis -- 5.6.1.1 Transient analysis -- 5.6.1.2 Lock time analysis -- Bibliography -- Chapter 6 Oscillators -- 6.1 Low-power Self-limiting Oscillators -- 6.1.1 What is it and how it works -- 6.1.1.1 The self-limiting oscillation mechanism -- 6.1.1.2 Oscillator phase noise -- 6.1.2 Practical circuits -- 6.1.2.1 Exercise: NAND gate-driven oscillator -- Exercise: Bipolar transistor-driven oscillator -- 6.2 Oscillators Using Distributed Resonators -- 6.2.1 What is it and how it works -- 6.2.1.1 Crystal resonators -- 6.2.1.2 Transmission-line resonators -- 6.3 Solved Exercises -- 6.4 Theory Behind Equations -- 6.4.1 General π-topology filter analysis -- 6.4.2 Leeson´s equation -- 6.4.2.1 Narrowband FM -- 6.4.2.2 Narrowband-FM through narrow band-pass filters -- 6.4.2.3 Leeson´s model -- 6.4.2.4 Computing clock jitter from oscillator phase noise -- 6.4.3 Lumped equivalent of resonant transmission lines -- 6.4.3.1 Open-ended λ/4 resonator - lumped equivalent -- 6.4.3.2 Short-ended λ/4 resonator - lumped equivalent -- 6.4.4 Voltage controlled oscillators -- Bibliography -- Chapter 7 Functional RF Blocks -- 7.1 Antenna -- 7.1.1 What is it? -- 7.1.2 How it works -- 7.1.3 Basic parameters of antennas. 7.1.3.1 Radiation pattern.
9781118937396
Radio-Transmitter-receivers-Design and construction. Wireless communication systems-Design and construction.