Zhi, Chunyi.
Flexible Energy Conversion and Storage Devices.
- 1st ed.
- 1 online resource (515 pages)
Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Flexible All‐Solid‐State Supercapacitors and Micro‐Pattern Supercapacitors -- 1.1 Introduction -- 1.2 Potential Components and Device Architecture for Flexible Supercapacitors -- 1.2.1 Flexible Electrode Materials -- 1.2.1.1 Carbon Materials -- 1.2.1.2 Conducting Polymers -- 1.2.1.3 Composite Materials -- 1.2.2 Solid‐State Electrolytes -- 1.2.3 Device Architecture of Flexible Supercapacitor -- 1.3 Flexible Supercapacitor Devices with Sandwiched Structures -- 1.3.1 Freestanding Films Based Flexible Devices -- 1.3.2 Flexible Substrate Supported Electrodes Based Devices -- 1.4 Flexible Micro‐Supercapacitor Devices with Interdigitated Architecture -- 1.4.1 In situ Synthesis of Active Materials on Pre‐Patterned Surfaces -- 1.4.2 Direct Printing of Active Materials -- 1.4.3 Patterning of Well‐Developed Film Electrodes -- 1.5 Performance Evaluation and Potential Application of Flexible Supercapacitors -- 1.5.1 Performance Evaluation of Flexible Supercapacitors -- 1.5.2 Integration of Flexible Supercapacitors -- 1.6 Conclusions and Perspectives -- References -- Chapter 2 Fiber/Yarn‐Based Flexible Supercapacitor -- 2.1 Introduction -- 2.2 Supercapacitor with Intrinsic Conductive Fiber/Yarn -- 2.2.1 Carbolic Fiber/Yarn‐Based Supercapacitor -- 2.2.2 Metallic Fiber/Yarn‐Based Supercapacitor -- 2.2.3 Hybrid Conductive Fiber/Yarn‐Based Supercapacitor -- 2.3 Supercapacitors with Intrinsic Nonconductive Fiber/Yarn -- 2.3.1 Fiber/Yarn Modified by Carbon Materials -- 2.3.2 Fiber/Yarn Modified by Metallic Materials -- 2.4 Integrated Electronic Textiles -- 2.5 Conclusion and Outlook -- References -- Chapter 3 Flexible Lithium Ion Batteries -- 3.1 Overview of Lithium Ion Battery -- 3.1.1 General Principle -- 3.1.2 Cathode -- 3.1.2.1 LiCoO2 with Layered Structure. 3.1.2.2 LiMn2O4 with a Spinel Structure -- 3.1.2.3 LiFePO4 with an Olivine Structure -- 3.1.3 Anode -- 3.1.3.1 Carbonaceous Anodes -- 3.1.3.2 Metal Alloy Anodes -- 3.1.4 Electrolyte -- 3.2 Planar‐Shaped Flexible Lithium Ion Batteries -- 3.2.1 Bendable Planar Lithium Ion Batteries -- 3.2.1.1 Bendable Carbon‐Based Planar Lithium Ion Battery -- 3.2.1.2 Thin Metal Material‐Based Lithium Ion Battery -- 3.2.1.3 Polymer‐Based Lithium Ion Battery -- 3.2.1.4 Special Structural Design‐Based Flexible Lithium-Ion Battery -- 3.2.2 Stretchable Planar Flexible Lithium Ion Batteries -- 3.3 Fiber‐Shaped Flexible Lithium Ion Batteries -- 3.3.1 Bendable Fiber‐Shaped Lithium Ion Battery -- 3.3.2 Stretchable Fiber‐Shaped Lithium Ion Battery -- 3.4 Perspective -- References -- Chapter 4 Flexible Sodium Ion Batteries: From Materials to Devices -- 4.1 Introduction to Flexible Sodium Ion Batteries (SIBs) -- 4.2 The Key Scientific Issues of Flexible SIBs -- 4.2.1 Design of Advanced Active‐Materials -- 4.2.2 Design of Flexible Substrates and Electrodes -- 4.2.3 Developing Novel Processing Technologies -- 4.3 Design of Advanced Materials for Flexible SIBs -- 4.3.1 Inorganic Anode Materials for Flexible SIBs -- 4.3.2 Inorganic Cathode Materials for Flexible SIBs -- 4.3.3 Organic Materials for Flexible SIBs -- 4.3.4 Other Major Components for Flexible SIBs (Electrolyte, Separators, etc.) -- 4.4 Design of Full Cell for Flexible SIBs -- 4.5 Summary and Outlook -- References -- Chapter 5 1D and 2D Flexible Carbon Matrix Materials for Lithium-Sulfur Batteries -- 5.1 Introduction -- 5.2 The Working Mechanism and Challenges of Li-S Batteries -- 5.3 Flexible Cathode Hosts for Lithium-Sulfur Batteries -- 5.4 Electrolyte Membranes for Flexible Li-S Batteries -- 5.4.1 Solid Polymer Electrolytes for Flexible Li-S Batteries -- 5.4.2 Gel Polymer Electrolytes for Flexible Li-S Batteries. 5.4.3 Composite Polymer Electrolytes for Flexible Li-S Batteries -- 5.5 Separator for Flexible Li-S Batteries -- 5.6 Summary -- References -- Chapter 6 Flexible Electrodes for Lithium-Sulfur Batteries -- 6.1 Introduction -- 6.2 Lithium-Sulfur Battery and Flexible Cathode -- 6.2.1 Lithium-Sulfur Battery -- 6.2.2 Flexible Cathode for Lithium-Sulfur Battery -- 6.3 The Flexible Cathode of Lithium-Sulfur Battery -- 6.3.1 Flexible Cathode Based on One‐dimensional Materials -- 6.3.1.1 Flexible Cathode Based on CNTs -- 6.3.1.2 Flexible Cathode Based on Carbon Nanofibers -- 6.3.1.3 Flexible Cathode Based on Polymer Fibers -- 6.3.2 Flexible Cathode Based on Two‐dimensional Materials -- 6.3.2.1 Flexible Cathode Based on Graphene Paper -- 6.3.2.2 Flexible Cathode Based on Graphene Foam -- 6.3.3 Flexible Cathode Based on Three‐dimensional Materials -- 6.3.3.1 Flexible Cathode Based on Three‐dimensional Carbon Foam Materials -- 6.3.3.2 Flexible Cathode Based on Carbon/Binder Composites Materials -- 6.3.3.3 Flexible Cathode Based on Three‐dimensional Metal Materials -- 6.4 Summary and Prospect -- References -- Chapter 7 Flexible Lithium-Air Batteries -- 7.1 Motivation for the Development of Flexible Lithium-Air Batteries -- 7.2 State of the Art for Flexible Lithium-Air Batteries -- 7.2.1 Overview of Flexible Energy Storage and Conversion Devices -- 7.2.2 Overview of Flexible Lithium-Air Batteries -- 7.2.2.1 Similarities Between Coin Cell/Swagelok Batteries with Flexible Battery -- 7.2.2.2 Differences Between Coin Cell/Swagelok Batteries with Flexible Battery -- 7.2.3 Current Status of Flexible Lithium-Air Battery -- 7.2.3.1 Planar Battery -- 7.2.3.2 Cable‐type Battery -- 7.2.3.3 Woven‐type Battery Pack -- 7.2.3.4 Battery Array Pack -- 7.3 Challenges and Future Work on Flexible Lithium-Air Batteries -- 7.4 Concluding Remarks -- References. Chapter 8 Nanodielectric Elastomers for Flexible Generators -- 8.1 Introduction -- 8.2 Electro‐Mechanical Principles -- 8.2.1 Electro‐Mechanical Conversion -- 8.2.2 Equations of DE Generators -- 8.3 Increasing the Performance of Dielectric Elastomers from the Materials Perspective -- 8.3.1 Increasing the Relative Permittivity of DEs -- 8.3.1.1 Elastomer Composites -- 8.3.1.2 Elastomer Blends -- 8.3.1.3 Chemical Modification -- 8.3.2 Decreasing Young's Modulus -- 8.3.3 Complex Network Structure -- 8.4 Circuits and Electro‐Mechanical Coupling Methods -- 8.5 Examples of Dielectric Elastomer Generators -- 8.6 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 9 Flexible Dye‐Sensitized Solar Cells -- 9.1 Introduction -- 9.2 Materials and Fabrication of Electrodes for FDSCs -- 9.2.1 Photo‐electrode -- 9.2.1.1 Flexible Substrate for Photo‐electrode -- 9.2.1.2 Nanostructured‐photoactive Film -- 9.2.1.3 Fiber‐type FDSCs -- 9.2.2 Counter‐electrode -- 9.3 Sensitizers in FDSCs and Thin Photoactive Film DSCs -- 9.3.1 State‐of‐the‐Art Review of Sensitizers in FDSCs -- 9.3.2 Sensitizers in Thin Photoactive Film DSCs -- 9.4 Electrolyte and Hole‐Transporting Materials for FDSCs -- 9.5 Conclusion and Outlook -- References -- Chapter 10 Self‐assembly in Fabrication of Semitransparent and Meso-Planar Hybrid Perovskite Photovoltaic Devices -- 10.1 Introduction -- 10.1.1 Semitransparent Perovskite Solar Cells Through Self‐assembly of Perovskite in One Step -- 10.1.1.1 Cell Architecture and Morphology -- 10.1.1.2 Transparency and Photovoltaic Performance of the Cells -- 10.1.1.3 Recombination Behavior of the Charges in Cells -- 10.1.2 Mesoporous-Planar Hybrid Perovskite Devices Through Mesh‐assisted Self‐assembly of Mesoporous‐TiO2 -- 10.1.2.1 Cell Architecture and Morphology -- 10.1.2.2 Photovoltaic Performance of the Solar Cells. 10.1.2.3 Study of Recombination Behavior Through Charge Extraction -- 10.2 Summary and Future Perspective -- References -- Chapter 11 Flexible Organic Solar Cells -- 11.1 Introduction -- 11.1.1 Working Principle -- 11.1.2 Performance Characterization of OSCs -- 11.1.3 Device Structure -- 11.1.3.1 Conventional Device Structure -- 11.1.3.2 Inverted Device Structure -- 11.2 Active Layer -- 11.2.1 Donor Materials -- 11.2.1.1 Poly(Phenylenevinylene) (PPV) and Polythiophene (PT) Derivatives -- 11.2.1.2 D-A Conjugated Polymers -- 11.2.2 Acceptor Materials -- 11.2.2.1 Fullerene Derivatives -- 11.2.2.2 Non‐fullerene Acceptors -- 11.3 Flexible Electrode -- 11.3.1 Conductive Polymer (PEDOT:PSS) -- 11.3.2 Metal Nanowires and Grids -- 11.3.3 Hybrid Carbon Material -- 11.4 Interfacial Layer -- 11.4.1 Hole Transporting Layer (HTL) -- 11.4.2 Electron Transporting Layer (ETL) -- 11.5 Tandem Organic Solar Cells -- 11.5.1 Interconnecting Layer -- 11.5.2 Low Bandgap Polymer Sub‐cell -- 11.6 Fabrication Technology for Flexible Organic Solar Cells -- 11.7 Summary -- References -- Chapter 12 Flexible Quantum Dot Sensitized Solar Cells -- 12.1 Introduction -- 12.2 Basic Concepts -- 12.2.1 Quantum Dots (QDs) -- 12.2.1.1 Quantum Size Effect -- 12.2.1.2 Multiple Exciton Generation -- 12.2.1.3 Ultrafast Electron Transfer -- 12.2.1.4 Large Specific Surface Area -- 12.2.2 Quantum Dots Sensitized Solar Cells (QDSSCs) -- 12.2.2.1 Schematic of the Structure and Charge Circulation of QDSSCs -- 12.2.2.2 Evaluation of the Photovoltaic Performances of QDSSCs -- 12.3 Development of the Flexible QDSSCs -- 12.3.1 Choosing of the Types of QDs -- 12.3.1.1 Cd‐based QDs -- 12.3.1.2 Pb‐based QDs -- 12.3.1.3 Cu‐based QDs -- 12.3.2 Fabrication of the Flexible Photo‐anode Films -- 12.3.3 TiO2‐Based Photo‐anodes -- 12.3.3.1 Photo‐anodes of TiO2 Nanoparticles. 12.3.3.2 Photo‐anodes of TiO2 Nanoarray Structures.
9783527342600
Flexible electronics.
Electronic books.
TK7868.P7 .F549 2018
621.381