Principles of Inorganic Materials Design.
- 1st ed.
- 1 online resource (613 pages)
- New York Academy of Sciences Series .
- New York Academy of Sciences Series .
Intro -- PRINCIPLES OF INORGANIC MATERIALS DESIGN -- CONTENTS -- FOREWORD TO SECOND EDITION -- FOREWORD TO FIRST EDITION -- PREFACE TO SECOND EDITION -- PREFACE TO FIRST EDITION -- ACRONYMS -- 1 CRYSTALLOGRAPHIC CONSIDERATIONS -- 1.1 Degrees of Crystallinity -- 1.1.1 Monocrystalline Solids -- 1.1.2 Quasicrystalline Solids -- 1.1.3 Polycrystalline Solids -- 1.1.4 Semicrystalline Solids -- 1.1.5 Amorphous Solids -- 1.2 Basic Crystallography -- 1.2.1 Space Lattice Geometry -- 1.3 Single Crystal Morphology and its Relationship to Lattice Symmetry -- 1.4 Twinned Crystals -- 1.5 Crystallographic Orientation Relationships in Bicrystals -- 1.5.1 The Coincidence Site Lattice -- 1.5.2 Equivalent Axis-Angle Pairs -- 1.6 Amorphous Solids and Glasses -- Practice Problems -- References -- 2 MICROSTRUCTURAL CONSIDERATIONS -- 2.1 Materials Length Scales -- 2.1.1 Experimental Resolution of Material Features -- 2.2 Grain Boundaries in Polycrystalline Materials -- 2.2.1 Grain-Boundary Orientations -- 2.2.2 Dislocation Model of Low Angle Grain Boundaries -- 2.2.3 Grain-Boundary Energy -- 2.2.4 Special Types of Low-Energy Grain Boundaries -- 2.2.5 Grain-Boundary Dynamics -- 2.2.6 Representing Orientation Distributions in Polycrystalline Aggregates -- 2.3 Materials Processing and Microstructure -- 2.3.1 Conventional Solidification -- 2.3.2 Deformation Processing -- 2.3.3 Consolidation Processing -- 2.3.4 Thin-Film Formation -- 2.4 Microstructure and Materials Properties -- 2.4.1 Mechanical Properties -- 2.4.2 Transport Properties -- 2.4.3 Magnetic and Dielectric Properties -- 2.4.4 Chemical Properties -- 2.5 Microstructure Control and Design -- Practice Problems -- References -- 3 CRYSTAL STRUCTURES AND BINDING FORCES -- 3.1 Structure Description Methods -- 3.1.1 Close Packing -- 3.1.2 Polyhedra -- 3.1.3 The Unit Cell -- 3.1.4 Pearson Symbols. 3.2 Cohesive Forces in Solids -- 3.2.1 Ionic Bonding -- 3.2.2 Covalent Bonding -- 3.2.3 Metallic Bonding -- 3.2.4 Atoms and Bonds as Electron Charge Density -- 3.3 Structural Energetics -- 3.3.1 Lattice Energy -- 3.3.2 The Born-Haber Cycle -- 3.3.3 Goldschmidt's Rules and Pauling's Rules -- 3.3.4 Total Energy -- 3.3.5 Electronic Origin of Coordination Polyhedra in Covalent Crystals -- 3.4 Common Structure Types -- 3.4.1 Iono-Covalent Solids -- 3.4.2 Intermetallic Compounds -- 3.5 Structural Disturbances -- 3.5.1 Intrinsic Point Defects -- 3.5.2 Extrinsic Point Defects -- 3.5.3 Structural Distortions -- 3.5.4 Bond Valence Sum Calculations -- 3.6 Structure Control and Synthetic Strategies -- Practice Problems -- References -- 4 THE ELECTRONIC LEVEL I: AN OVERVIEW OF BAND THEORY -- 4.1 The Many-Body Schrödinger Equation -- 4.2 Bloch's Theorem -- 4.3 Reciprocal Space -- 4.4 A Choice of Basis Sets -- 4.4.1 Plane-Wave Expansion - The Free-Electron Models -- 4.4.2 The Fermi Surface and Phase Stability -- 4.4.3 Bloch Sum Basis Set - The LCAO Method -- 4.5 Understanding Band-Structure Diagrams -- 4.6 Breakdown of the Independent Electron Approximation -- 4.7 Density Functional Theory - The Successor to the Hartree-Fock Approach -- Practice Problems -- References -- 5 THE ELECTRONIC LEVEL II: THE TIGHT-BINDING ELECTRONIC STRUCTURE APPROXIMATION -- 5.1 The General LCAO Method -- 5.2 Extension of the LCAO Treatment to Crystalline Solids -- 5.3 Orbital Interactions in Monatomic Solids -- 5.3.1 σ-Bonding Interactions -- 5.3.2 π-Bonding Interactions -- 5.4 Tight-Binding Assumptions -- 5.5 Qualitative LCAO Band Structures -- 5.5.1 Illustration 1: Transition Metal Oxides with Vertex-Sharing Octahedra -- 5.5.2 Illustration 2: Reduced Dimensional Systems -- 5.5.3 Illustration 3: Transition Metal Monoxides with Edge-Sharing Octahedra -- 5.5.4 Corollary. 5.6 Total Energy Tight-Binding Calculations -- Practice Problems -- References -- 6 TRANSPORT PROPERTIES -- 6.1 An Introduction to Tensors -- 6.2 Thermal Conductivity -- 6.2.1 The Free Electron Contribution -- 6.2.2 The Phonon Contribution -- 6.3 Electrical Conductivity -- 6.3.1 Band Structure Considerations -- 6.3.2 Thermoelectric, Photovoltaic, and Magnetotransport Properties -- 6.4 Mass Transport -- 6.4.1 Atomic Diffusion -- 6.4.2 Ionic Conduction -- Practice Problems -- References -- 7 METAL-NONMETAL TRANSITIONS -- 7.1 Correlated Systems -- 7.1.1 The Mott-Hubbard Insulating State -- 7.1.2 Charge-Transfer Insulators -- 7.1.3 Marginal Metals -- 7.2 Anderson Localization -- 7.3 Experimentally Distinguishing Disorder from Electron Correlation -- 7.4 Tuning the M-NM Transition -- 7.5 Other Types of Electronic Transitions -- Practice Problems -- References -- 8 MAGNETIC AND DIELECTRIC PROPERTIES -- 8.1 Phenomenological Description of Magnetic Behavior -- 8.1.1 Magnetization Curves -- 8.1.2 Susceptibility Curves -- 8.2 Atomic States and Term Symbols of Free Ions -- 8.3 Atomic Origin of Paramagnetism -- 8.3.1 Orbital Angular Momentum Contribution - The Free Ion Case -- 8.3.2 Spin Angular Momentum Contribution - The Free Ion Case -- 8.3.3 Total Magnetic Moment - The Free Ion Case -- 8.3.4 Spin-Orbit Coupling - The Free Ion Case -- 8.3.5 Single Ions in Crystals -- 8.3.6 Solids -- 8.4 Diamagnetism -- 8.5 Spontaneous Magnetic Ordering -- 8.5.1 Exchange Interactions -- 8.5.2 Itinerant Ferromagnetism -- 8.5.3 Noncolinear Spin Configurations and Magnetocrystalline Anisotropy -- 8.6 Magnetotransport Properties -- 8.6.1 The Double Exchange Mechanism -- 8.6.2 The Half-Metallic Ferromagnet Model -- 8.7 Magnetostriction -- 8.8 Dielectric Properties -- 8.8.1 The Microscopic Equations -- 8.8.2 Piezoelectricity -- 8.8.3 Pyroelectricity -- 8.8.4 Ferroelectricity. Practice Problems -- References -- 9 OPTICAL PROPERTIES OF MATERIALS -- 9.1 Maxwell's Equations -- 9.2 Refractive Index -- 9.3 Absorption -- 9.4 Nonlinear Effects -- 9.5 Summary -- Practice Problems -- References -- 10 MECHANICAL PROPERTIES -- 10.1 Stress and Strain -- 10.2 Elasticity -- 10.2.1 The Elasticity Tensor -- 10.2.2 Elastically Isotropic Solids -- 10.2.3 The Relation Between Elasticity and the Cohesive Forces in a Solid -- 10.2.4 Superelasticity, Pseudoelasticity, and the Shape Memory Effect -- 10.3 Plasticity -- 10.3.1 The Dislocation-Based Mechanism to Plastic Deformation -- 10.3.2 Polycrystalline Metals -- 10.3.3 Brittle and Semibrittle Solids -- 10.3.4 The Correlation Between the Electronic Structure and the Plasticity of Materials -- 10.4 Fracture -- Practice Problems -- References -- 11 PHASE EQUILIBRIA, PHASE DIAGRAMS, AND PHASE MODELING -- 11.1 Thermodynamic Systems and Equilibrium -- 11.1.1 Equilibrium Thermodynamics -- 11.2 Thermodynamic Potentials and the Laws -- 11.3 Understanding Phase Diagrams -- 11.3.1 Unary Systems -- 11.3.2 Binary Metallurgical Systems -- 11.3.3 Binary Nonmetallic Systems -- 11.3.4 Ternary Condensed Systems -- 11.3.5 Metastable Equilibria -- 11.4 Experimental Phase-Diagram Determinations -- 11.5 Phase-Diagram Modeling -- 11.5.1 Gibbs Energy Expressions for Mixtures and Solid Solutions -- 11.5.2 Gibbs Energy Expressions for Phases with Long-Range Order -- 11.5.3 Other Contributions to the Gibbs Energy -- 11.5.4 Phase Diagram Extrapolations - the CALPHAD Method -- Practice Problems -- References -- 12 SYNTHETIC STRATEGIES -- 12.1 Synthetic Strategies -- 12.1.1 Direct Combination -- 12.1.2 Low Temperature -- 12.1.3 Defects -- 12.1.4 Combinatorial Synthesis -- 12.1.5 Spinodal Decomposition -- 12.1.6 Thin Films -- 12.1.7 Photonic Materials -- 12.1.8 Nanosynthesis -- 12.2 Summary -- Practice Problems. References -- 13 AN INTRODUCTION TO NANOMATERIALS -- 13.1 History of Nanotechnology -- 13.2 Nanomaterials Properties -- 13.2.1 Electrical Properties -- 13.2.2 Magnetic Properties -- 13.2.3 Optical Properties -- 13.2.4 Thermal Properties -- 13.2.5 Mechanical Properties -- 13.2.6 Chemical Reactivity -- 13.3 More on Nanomaterials Preparative Techniques -- 13.3.1 Top-Down Methods for the Fabrication of Nanocrystalline Materials -- 13.3.2 Bottom-Up Methods for the Synthesis of Nanostructured Solids -- References -- APPENDIX 1 -- APPENDIX 2 -- APPENDIX 3 -- INDEX.