Li, Rongsheng (Ken).

All Source Positioning, Navigation and Timing. - 1st ed. - 1 online resource (463 pages)

Intro -- All Source Positioning, Navigation, and Timing -- Contents -- Chapter 1 Introduction and Overview -- 1.1 Why All Source Positioning, Navigation, and Timing? -- 1.2 Complementary PNT Technologies and All Source PNT -- 1.3 Generic All Source PNT Architecture -- 1.4 Structure of This Book -- References -- Chapter 2 Foundations -- 2.1 Introduction -- 2.2 Coordinate Frames -- 2.3 Mathematical Representation of Attitude and Coordinate Transformations -- 2.3.1 Inner and Cross-Product-Related Symbols -- 2.3.2 DCM -- 2.3.3 Euler Angles -- 2.3.4 Rotation Around an Arbitrary Axis -- 2.3.5 Quaternions -- 2.4 ECI Frame Revisited -- 2.4.1 Precession of Earth Axis of Rotation -- 2.4.2 Nutation of Earth Rotational Axis -- 2.4.3 Standard J2000 ECI to True of Date ECI Transformation -- 2.5 Earth Model, Earth Gravity Field Model, and Earth Magnetic Field Model -- 2.5.1 Earth Model -- 2.5.2 Earth Gravitational Model and World Magnetic Model -- 2.5.3 Conversion of the Geodetic Position to the ECEF Position -- 2.5.4 Conversion of the ECEF to the Geodetic Position -- 2.5.5 Exact Equation-Based Algorithm for the ECEF to Geodetic Conversion -- 2.5.6 Earth Gravity Field Model -- 2.5.3 Earth Magnetic Field Models -- 2.6 Kalman Filters and Variations -- 2.6.1 Kalman Filter -- 2.6.2 Extended Kalman Filter (EKF) -- 2.6.3 Generic Propagation/Prediction/Correction Architecture and UKF/Particle Filters -- 2.6.4 Practical Issues in the Application of the Kalman Filters -- References -- Chapter 3 Various Propagation-Based Solutions -- 3.1 Propagation Model of Constant and Almost Constant Parameters -- 3.1.1 Random Walk and First-Order Markov Process -- 3.1.2 Differential and Algebraic Lyapunov Equations -- 3.2 Clock and Clock Propagation and Error Models -- 3.2.1 Overview -- 3.2.2 Time and Frequency Errors, Allan Variance, and Power Spectral Density (PSD). 3.2.3 Rational Model for Clock Propagation -- 3.3 Inertial Measurement Unit (IMU) Gyro and Accelerometer Error Parameter Models -- 3.4 Attitude Propagation and Error Models -- 3.4.1 Angular Velocity and Attitude Kinematics -- 3.4.2 Attitude Propagation/Numerical Integration Algorithms -- 3.4.3 Euler Angle Attitude Propagation -- 3.4.4 Attitude Propagation Error Models -- 3.5 Body Frame Speed and Attitude/Heading Sensor-Based Navigation -- 3.5.1 Introduction -- 3.5.2 Navigation Equations -- 3.5.3 Error Models -- 3.6 Inertial Navigation and Error Models -- 3.6.1 Introduction -- 3.6.2 ECI Frame Navigation Equations and Error Models -- 3.6.3 ECEF Frame (or Other Earth Fixed Frame) Navigation Equations and Error Equations -- 3.6.4 Local-Level Frame Inertial Navigation Equations and Error Equations -- References -- Chapter 4 Various Measurement-Based Solutions -- 4.1 Introduction -- 4.2 PNT Using Range and Range Rate Measurements -- 4.2.1 Two-Way Ranging and Time Transfer -- 4.2.2 Simple Range-Based Positioning -- 4.2.3 Range-Only Network Collaborative PNT -- 4.3 PNT Using Pseudo-Range Measurement -- 4.3.1 Synchronized One-Way Ranging (Pseudo-Range) and PNT (GNSS) -- 4.3.2 Asynchronous One-Way Ranging (Pseudo-Range) and PNT (SOOP) -- 4.4 Position and Attitude Determination Using Angle Measurements -- 4.4.1 Introduction -- 4.4.2 Attitude Determination Using Angle Measurements -- 4.4.3 Position and Attitude Determination from Angle Measurements -- 4.5 Generic Terrain Reference -- 4.5.1 Simplified Case: The Sensor on the Perfect Platform -- 4.5.2 Strapdown Sensors: Earth Gravity Anomaly and Earth Magnetic Field -- 4.5.3 Strapdown Sensors: Slant Range Sensor -- 4.6 Geo-Referenced Image-Based Navigation: Measurement Equations -- 4.6.1 Geo-Referenced Image as Collection of Image Anchor Points -- 4.6.2 Measurement Model for Image Anchor Points -- References. Chapter 5 All Source PNT Solution: Integration Through Kalman Filters -- 5.1 Introduction -- 5.2 Kalman Filter and All Source PNT Algorithm Architecture -- 5.3 Fault and Threat Management Architecture -- 5.3.1 PFA and PMD -- 5.3.2 Reducing Both PFA and PMA at the Same Time by the Persistency Test -- 5.3.3 Containment Versus Response -- 5.3.4 Fault Detection, Containment, Isolation, and Response at Each of the Four Levels -- 5.4 Steps to Build an All Source PNT System -- References -- Chapter 6 Integrated Clock -- 6.1 Introduction -- 6.2 Architecture -- 6.3 Propagation Solution and Linearized Error Model -- 6.4 Updates for Integrated Clock -- 6.5 Integrated Clock Simulation Example -- References -- Chapter 7 Spacecraft Attitude Determination -- 7.1 Introduction -- 7.2 Stellar Inertial Attitude Determination (SIAD) -- 7.2.1 System Concept -- 7.2.2 The SIAD Architecture -- 7.2.3 Propagation Algorithms and Error Models -- 7.2.4 Measurement Equations and Error Models -- 7.2.5 Direct Star Identification and Star-Catalog Near-Neighbor Criteria -- 7.2.6 Aberration Error Correction -- 7.2.7 SAA Algorithm: An Example -- 7.2.8 Star Catalog -- 7.2.9 Star-Tracker Orientation and Configuration Considerations -- 7.3 Sun Sensor-Based Attitude Determination -- 7.3.1 The Concept -- 7.3.2 The Sun Sensor as an Additional Sensor for Normal Attitude Determination -- 7.3.3 The Sun Sensor for Attitude Determination to Support Sun-Pointing and Sun Acquisition -- 7.4 GPS Carrier-Phase-Based Attitude Determination -- 7.4.1 Introduction -- 7.4.2 Architecture -- 7.4.3 Attitude Initialization and Initial Ambiguity Resolution -- 7.4.4 GPS Carrier-Phase Measurements as Update and Ambiguity Maintenance -- References -- Chapter 8 Orbit Determination -- 8.1 Introduction -- 8.2 Orbit Determination Architecture -- 8.3 Propagation Algorithms and Error Models. 8.4 Measurement Equations and Error Models -- 8.4.1 Range Measurement from Ground or Space Objects (Crosslinks) -- 8.4.2 Angle Measurement from a Ground Telescope or a Spaceborne Camera -- 8.4.3 GPS-Based Orbit Determination -- References -- Chapter 9 Terrain Referenced Navigation -- 9.1 Introduction -- 9.2 TRN Architecture -- 9.3 Propagation Algorithms and Error Models -- 9.4 Measurement Equations and Error Models -- 9.4.1 Baro Altimeter Update -- 9.4.2 Radar Altimeter Update -- 9.4.3 Slant Range Update -- 9.3.4 Simulation Examples -- References -- Chapter 10 Modern Celestial Navigation -- 10.1 Introduction -- 10.2 Fundamental Principles of Celestial Navigation (and Related Applications) -- 10.3 Observation of the Stars and the RSO: Difficulties and Solutions -- 10.3.1 Cloud and Cloud Avoidance -- 10.3.2 Daytime Star Observations/Day Time Capable Star Tracker -- 10.3.3 LEO RSO Observation: Scarcity and Midnight Gap -- 10.4 Example Configurations and General Architecture -- 10.4.1 Example Designs and Choices of Technology -- 10.4.2 General Architecture -- 10.5 Propagation Algorithms and Error Models -- 10.6 Measurement Equations and Error Models -- 10.7 Example Simulation Results -- References -- Chapter 11 Image and Vision-Based Navigation -- 11.1 Introduction -- 11.2 Image and Vision-Based Navigation Architecture -- 11.3 Camera Image Preprocessing Algorithms -- 11.3.1 Overview -- 11.3.2 Image Intensity Dynamic Range Adjustment and Equalization -- 11.3.3 Camera Calibration and Image Correction by Calibration Parameters -- 11.4 Map-Based Image and Vision Navigation -- 11.4.1 Architecture Variations -- 11.4.2 Output Prediction, Registration Matching, and the Correlation Algorithm -- 11.4.3 Propagation Algorithms and Error Models -- 11.4.4 Measurement Equations and Error Models. 11.5 SLAM-Based Image and Vision Navigation -- 11.5.1 The Concept -- 11.5.2 EKF-SLAM -- 11.6 Visual Odometry -- 11.6.1 The Concept -- 11.6.2 Deriving Motion Information from Measured Landmarks over Consecutive Frames -- 11.6.3 Attitude and Position Propagation Using Visual Odometry -- References -- Chapter 12 Gravity Anomaly and Magnetic Anomaly Referenced Navigation -- 12.1 Introduction -- 12.2 Generic TRN: Fundamental Performance Drivers -- 12.3 Gravimeter, GGI, and Magnetometers -- 12.3.1 Gravimeters -- 12.3.2 GGI -- 12.4 Earth Gravity Anomaly and Magnetic Anomaly Model and Database -- 12.4.1 Earth Gravity Field and Gravity Gradient -- 12.5 Architecture -- 12.6 Propagation Algorithms and Error Models -- 12.7 Measurement Equations and Error Models -- 12.7.1 Strapdown GGI Update -- 12.7.2 Single-Axis Gravity Anomaly Update -- 12.7.3 Scalar Magnetometer Update -- 12.8 Simulation Examples -- References -- Chapter 13 Collaborative PNT -- 13.1 Introduction -- 13.2 Collaborative PNT Architecture -- 13.2.1 Generic Kalman Filter Architecture for a Network Collaborative Estimator -- 13.2.2 Algorithm and Equations for ITNS Extended Kalman Filter -- 13.2.3 Algorithm and Equations for the LWIN EKF -- 13.2.4 Two Types of Collaborative Measurements -- 13.3 Collaborative Time Synchronization and NTP and PTP -- 13.4 Collaboration with LOS, AOA, and DOA and Range Measurements -- 13.4.1 LWIN Equations -- 13.4.2 ITNS Equations -- 13.4.3 Linearized Equations -- 13.4.4 Integration with Inertial Navigation: The ITNS Approach -- 13.4.5 Integration with Inertial Navigation: The LWIN Approach -- 13.4.6 Simulation Example -- 13.5 Collaboration with Range Measurements Only -- 13.5.1 Nonlinear and Linearized Measurement Equations -- 13.5.2 The ITNS Approach -- 13.5.3 IIN: The LWIN Approach -- 13.5.4 Range-Only Least Square Solution -- 13.5.5 ITNS Approach. 13.5.6 LWIN Approach.

9781630817046


Global Positioning System.


Electronic books.

G109.5 .L57 2020

910.285