Rosenberg, Harold.

Degree Theory of Immersed Hypersurfaces. - 1st ed. - 1 online resource (74 pages) - Memoirs of the American Mathematical Society Series ; v.265 . - Memoirs of the American Mathematical Society Series .

Cover -- Title page -- Chapter 1. Introduction -- 1.1. General -- 1.2. Background -- 1.3. Applications -- Acknowledgments -- Chapter 2. Degree theory -- 2.1. The manifold of immersions and its tangent bundle -- 2.2. Curvature as a vector field -- 2.3. Simplicity -- 2.4. Surjectivity -- 2.5. Finite dimensional sections -- 2.6. Extensions -- 2.7. Orientation - the finite-dimensional case -- 2.8. Orientation - the infinite-dimensional case -- 2.9. Constructing the degree -- 2.10. Varying the metric -- Chapter 3. Applications -- 3.1. The generalised Simons' formula -- 3.2. Prescribed mean curvature -- 3.3. Calculating the Degree -- 3.4. Extrinstic Curvature -- 3.5. Special Lagrangian curvature -- 3.6. Extrinsic curvature in two dimensions -- Appendix A. Weakly smooth maps -- Appendix B. Prime immersions -- Bibliography -- Back Cover.

The authors develop a degree theory for compact immersed hypersurfaces of prescribed K-curvature immersed in a compact, orientable Riemannian manifold, where K is any elliptic curvature function. They apply this theory to count the (algebraic) number of immersed hyperspheres in various cases: where K is mean curvature, extrinsic curvature and special Lagrangian curvature and show that in all these cases, this number is equal to -\chi(M), where \chi(M) is the Euler characteristic of the ambient manifold M.

9781470461485


Topological degree.
Riemannian manifolds.
Hypersurfaces.
Curvature.


Electronic books.

QA671 .R674 2020

516.3/73