TY - BOOK AU - Goldstein,Adrian AU - Krell,Andreas AU - Burshtein,Zeev TI - Transparent Ceramics: Materials, Engineering, and Applications SN - 9781119429555 AV - QC378.5 .G653 2020 PY - 2020/// CY - Newark PB - John Wiley & Sons, Incorporated KW - Transparent ceramics KW - Electronic books N1 - Cover -- Title Page -- Copyright -- Contents -- Foreword -- Acknowledgments -- General Abbreviations -- Chapter 1 Introduction -- 1.1 Importance of Transparent Ceramics: The Book's Rationale Topic and Aims -- 1.2 Factors Determining the Overall Worth of Transparent Ceramics -- 1.2.1 Technical Characteristics -- 1.2.2 Fabrication and Characterization Costs -- 1.2.3 Overview of Worth -- 1.3 Spectral Domain for Ceramics High Transmission Targeted in This Book -- 1.3.1 High Transmission Spectral Domain -- 1.3.2 Electromagnetic Radiation/Solid Interaction in the Vicinity of the Transparency Domain -- 1.4 Definition of Transparency Levels -- 1.5 Evolution of Transmissive Ability Along the Ceramics Development History -- 1.5.1 Ceramics with Transparency Conferred by Glassy Phases -- 1.5.2 The First Fully Crystalline Transparent Ceramic -- 1.5.3 A Brief Progress History of All‐Crystalline Transparent Ceramics -- Chapter 2 Electromagnetic Radiation: Interaction with Matter -- 2.1 Electromagnetic Radiation: Phenomenology and Characterizing Parameters -- 2.2 Interference and Polarization -- 2.3 Main Processes which Disturb Electromagnetic Radiation After Incidence on a Solid -- 2.3.1 Refraction -- 2.3.2 Reflection -- 2.3.3 Birefringence -- 2.3.4 Scattering -- 2.3.4.1 Scattering by Pores -- 2.3.4.2 Scattering Owed to Birefringence -- 2.3.5 Absorption -- 2.3.5.1 Transition Metal and Rare‐Earth Cations in Transparent Ceramic Hosts -- 2.3.5.2 Absorption Spectra of Metal and Rare‐Earth Cations Located in TC Hosts -- 2.3.5.2.1 TransitionMetal and Rare-Earth Cations'Electronic Spectra: Theoretical Basis -- 2.3.5.2.1.1 Electronic States of a Cation in Free Space -- 2.3.5.2.2 Absorption Spectra of Transition Metaland Rare-Earth Cations: Examples -- 2.3.5.2.2.1 The Considered Solid Hosts; 2.4 Physical Processes Controlling Light Absorption in the Optical Window Vicinity -- 2.4.1 High Photon Energy Window Cutoff: Ultraviolet Light Absorption in Solids -- 2.4.2 Low Photon Energy Window Cutoff: Infrared Light Absorption in Solids -- 2.4.2.1 Molecular Vibrations -- 2.4.2.2 Solid Vibrations -- 2.4.2.3 Acoustic Modes -- 2.4.2.4 Optical Modes -- 2.5 Thermal Emissivity -- 2.6 Color of Solids -- 2.6.1 Quantitative Specification of Color -- 2.6.2 Coloration Mechanisms: Coloration Based on Conductive Colloids -- Chapter 3 Ceramics Engineering: Aspects Specific to Those Transparent -- 3.1 Processing -- 3.1.1 List of Main Processing Approaches -- 3.1.2 Powder Compacts Sintering -- 3.1.2.1 Configuration Requirements for High Green Body Sinterability: Factors of Influence -- 3.1.2.2 Powder Processing and Green‐Body Forming -- 3.1.2.2.1 Agglomerates -- 3.1.2.2.2 Powder Processing -- 3.1.2.2.3 Forming Techniques -- 3.1.2.2.3.1 Press Forming -- 3.1.2.2.3.2 Liquid-Suspensions Based Forming -- 3.1.2.2.3.3 Slip-Casting Under StrongMagnetic Fields -- 3.1.2.2.3.4 Gravitational Deposition, Centrifugal-Casting, and Filter-Pressing -- 3.1.2.3 Sintering -- 3.1.2.3.1 Low Relevancy of Average Pore Size -- 3.1.2.3.2 Pore Size Distribution Dynamics During Sintering -- 3.1.2.3.3 Grain Growth -- 3.1.2.3.4 Methods for Pores Closure Rate Increase -- 3.1.2.3.4.1 Liquid Assisted Sintering -- 3.1.2.3.4.2 Pressure Assisted Sintering -- 3.1.2.3.4.3 Sintering Under Electromagnetic Radiation -- 3.1.2.3.4.4 Sintering Slip-Cast Specimens Under Magnetic Field -- 3.1.2.3.4.5 Reaction-Preceded Sintering -- 3.1.2.3.4.6 Use of Sintering Aids -- 3.1.3 Bulk Chemical Vapor Deposition (CVD) -- 3.1.4 Glass‐Ceramics Fabrication by Controlled Glass Crystallization -- 3.1.4.1 Introduction -- 3.1.4.2 Glass Crystallization: Basic Theory -- 3.1.4.2.1 Nucleation -- 3.1.4.2.2 Crystal Growth; 3.1.4.2.3 Phase Separation in Glass -- 3.1.4.2.4 Crystal Morphologies -- 3.1.4.3 Requirements for the Obtainment of Performant Glass‐Ceramics -- 3.1.4.3.1 Nucleators -- 3.1.4.4 Influence of Controlled Glass Crystallization on Optical Transmission -- 3.1.4.4.1 Full Crystallization -- 3.1.5 Bulk Sol-Gel -- 3.1.6 Polycrystalline to Single Crystal Conversion via Solid‐State Processes -- 3.1.7 Transparency Conferred to Non‐cubic Materials by Limited Lattice Disordering -- 3.1.8 Transparent Non‐cubic Nanoceramics -- 3.1.9 Grinding and Polishing -- 3.2 Characterization -- 3.2.1 Characterization of Particles, Slurries, Granules, and Green Bodies Relevant in Some Transparent Ceramics Fabrication -- 3.2.1.1 Powder Characterization -- 3.2.1.2 Granules Measurement and Slurry Characterization -- 3.2.1.3 Green‐Body Characterization -- 3.2.2 Scatters Topology Illustration -- 3.2.2.1 Laser‐Scattering Tomography (LST) -- 3.2.3 Discrimination Between Translucency and High Transmission Level -- 3.2.4 Bulk Density Determination from Optical Transmission Data -- 3.2.5 Lattice Irregularities: Grain Boundaries, Cations Segregation, Inversion -- 3.2.6 Parasitic Radiation Absorbers' Identification and Spectral Characterization -- 3.2.6.1 Absorption by Native Defects of Transparent Hosts -- 3.2.7 Detection of ppm Impurity Concentration Levels -- 3.2.8 Mechanical Issues for Windows and Optical Components -- 4 Materials and Their Processing -- 4.1 Introduction -- 4.1.1 General -- 4.1.2 List of Materials and Their Properties -- 4.2 Principal Materials Description -- 4.2.1 Mg and Zn Spinels -- 4.2.1.1 Mg‐Spinel -- 4.2.1.1.1 Structure -- 4.2.1.1.1.1 Ideal Lattice Structure -- 4.2.1.1.1.2 Inversion -- 4.2.1.1.1.3 Native Point Defects and Their Effects -- 4.2.1.2 Zn‐Spinel -- 4.2.2 γ‐Al‐oxynitride -- 4.2.2.1 Composition and Structure -- 4.2.2.2 Processing; 4.2.2.2.1 Fabrication Approaches -- 4.2.2.2.2 Powder Synthesis -- 4.2.2.2.3 Green Parts Forming. Sintering -- 4.2.2.3 Characteristics of Densified Parts -- 4.2.3 Transparent and Translucent Alumina -- 4.2.3.1 Structure -- 4.2.3.1.1 Utility of T-PCA -- 4.2.3.2 Processing of Transparent Ceramic Alumina -- 4.2.3.2.1 Raw Materials -- 4.2.3.2.2 Processing -- 4.2.3.3 Properties of Transparent Alumina -- 4.2.4 Transparent Magnesia and Calcia -- 4.2.4.1 Structure -- 4.2.4.2 Raw Materials and Processing -- 4.2.4.3 Properties -- 4.2.4.4 Transparent Calcium Oxide -- 4.2.5 Transparent YAG and Other Garnets -- 4.2.5.1 Structure, Processing, and Properties of YAG -- 4.2.5.1.1 Processing -- 4.2.5.1.1.1 YAG Powders -- 4.2.5.1.1.2 Processing Procedure Description -- 4.2.5.1.2 Properties of YAG -- 4.2.5.1.2.1 Spectral Effects of Impurities -- 4.2.5.2 LuAG -- 4.2.5.3 Garnets Based on Tb -- 4.2.5.4 Garnets Based on Ga -- 4.2.5.5 Other Materials Usable for Magneto‐Optical Components -- 4.2.6 Transparent Yttria and Other Sesquioxides -- 4.2.6.1 Structure of Y2O3 -- 4.2.6.2 Processing of Y2O3 -- 4.2.6.2.1 Y2O3 Powders -- 4.2.6.2.2 Processing Approaches -- 4.2.6.2.3 Discussion of Processing -- 4.2.6.3 Properties of Y2O3 -- 4.2.6.4 Other Sesquioxides with Bixbyite Lattice -- 4.2.6.4.1 Sc2O3 -- 4.2.6.4.2 Lu2O3 -- 4.2.7 Transparent Zirconia -- 4.2.7.1 Structure: Polymorphism, Effect of Alloying -- 4.2.7.2 Processing-Transparency Correlation in Cubic Zirconia Fabrication -- 4.2.7.2.1 Zirconia Powders -- 4.2.7.2.2 Forming and Sintering -- 4.2.7.3 Properties -- 4.2.7.3.1 Density of Zirconias -- 4.2.7.4 Types of Transparent Zirconia -- 4.2.7.4.1 TZPs -- 4.2.7.4.2 Cubic ZrO2 -- 4.2.7.4.3 Monoclinic Zirconia -- 4.2.7.4.4 Electronic Absorption -- 4.2.8 Transparent Metal Fluoride Ceramics -- 4.2.8.1 Crystallographic Structure -- 4.2.8.2 Processing of Transparent‐Calcium Fluoride; 4.2.8.3 Properties -- 4.2.9 Transparent Chalcogenides -- 4.2.9.1 Composition and Structure -- 4.2.9.2 Processing -- 4.2.9.3 Properties -- 4.2.10 Ferroelectrics -- 4.2.10.1 Ferroelectrics with Perovskite‐Type Lattice -- 4.2.10.2 PLZTs: Fabrication and Properties -- 4.2.10.2.1 Electro-optic Properties of PLZTs -- 4.2.10.3 Other Perovskites Including Pb -- 4.2.10.4 Perovskites Free of Pb -- 4.2.10.4.1 Ba Metatitanate -- 4.2.10.4.2 Materials Based on the Potassium Niobate-sodium Niobate System -- 4.2.10.4.2.1 Perovskites Including B2+ and B5+ Cations -- 4.2.11 Transparent Glass‐Ceramics -- 4.2.11.1 Transparent Glass Ceramics Based on Stuffed β‐Quartz Solid Solutions -- 4.2.11.2 Transparent Glass Ceramics Based on Crystals Having a Spinel‐Type Lattice -- 4.2.11.3 Mullite‐Based Transparent Glass‐Ceramics -- 4.2.11.4 Other Transparent Glass‐Ceramics Derived from Polinary Oxide Systems -- 4.2.11.5 Oxyfluoride Matrix Transparent Glass‐Ceramics -- 4.2.11.6 Transparent Glass‐Ceramics Including Very High Crystalline Phase Concentration -- 4.2.11.6.1 Materials of Extreme Hardness (Al2O3-La2O3,ZrO2) -- 4.2.11.6.2 TGCs of High Crystallinity Including Na3Ca Silicates -- 4.2.11.6.3 Materials for Scintillators -- 4.2.11.7 Pyroelectric and Ferroelectric Transparent Glass‐Ceramics -- 4.2.12 Cubic Boron Nitride -- 4.2.13 Ultrahard Transparent Polycrystalline Diamond Parts -- 4.2.13.1 Structure -- 4.2.13.2 Fabrication -- 4.2.13.3 Properties -- 4.2.14 Galium Phosphide (GaP) -- 4.2.15 Transparent Silicon Carbide and Nitride and Aluminium Oxynitride -- Chapter 5 TC Applications -- 5.1 General Aspects -- 5.2 Brief Description of Main Applications -- 5.2.1 Envelopes for Lighting Devices -- 5.2.2 Transparent Armor Including Ceramic Layers -- 5.2.2.1 Armor: General Aspects -- 5.2.2.2 Specifics of the Transparent‐Ceramic Based Armor -- 5.2.2.3 Materials for Transparent Armor; 5.2.2.3.1 Ceramics UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=6174017 ER -