Atem de Carvalho, Rogerio.
Nanosatellites : Space and Ground Technologies, Operations and Economics.
- 1st ed.
- 1 online resource (709 pages)
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Foreword: Nanosatellite Space Experiment -- Introduction by the Editors -- Chapter 1 I‐1 A Brief History of Nanosatellites -- 1.1 Introduction -- 1.2 Historical Nanosatellite Launch Rates -- 1.3 The First Nanosatellites -- 1.4 The Large Space Era -- 1.5 The New Space Era -- 1.5.1 Technology Development -- 1.5.2 Commercial Nanosatellites and Constellations -- 1.6 Summary -- References -- Chapter 2 I‐2a On‐board Computer and Data Handling -- 2.1 Introduction -- 2.2 History -- 2.3 Special Requirements for Space Applications -- 2.4 Hardware -- 2.4.1 Components -- 2.4.2 Brief History of On‐board Computers -- 2.4.3 Processors -- 2.4.3.1 Field Programmable Gate Array (FPGA) -- 2.4.4 Mass Memory -- 2.4.5 Bus -- 2.5 Design -- 2.5.1 System Architecture -- 2.5.2 Central Versus Distributed Processing -- 2.5.3 Design Criteria -- 2.5.4 Definition of Requirements -- 2.5.5 Resource Estimation and Data Budget -- 2.5.5.1 Data Budget Analysis -- 2.5.6 Commanding -- 2.5.7 Telemetry -- 2.5.8 Time Generation -- 2.5.9 Handling of Errors -- 2.5.10 Radiation Effects -- References -- Chapter 3 I‐2b Operational Systems -- 3.1 Introduction -- 3.2 RTOS Overview -- 3.3 RTOS on On‐board Computers (OBCs): Requirements for a Small Satellite -- 3.3.1 Requirements -- 3.4 Example Projects -- 3.5 Conclusions -- References -- Chapter 4 I‐2c Attitude Control and Determination -- 4.1 Introduction -- 4.2 ADCS Fundamentals -- 4.3 ADCS Requirements and Stabilization Methods -- 4.4 ADCS Background Theory -- 4.4.1 Coordinate Frame Definitions -- 4.4.2 Attitude Kinematics -- 4.4.3 Attitude Dynamics -- 4.5 Attitude and Angular Rate Determination -- 4.5.1 TRIAD Quaternion Determination -- 4.5.2 Kalman Rate Estimator -- 4.5.2.1 System Model -- 4.5.2.2 Measurement Model -- 4.5.3 Full‐State Extended Kalman Filter Estimator. 4.6 Attitude and Angular Rate Controllers -- 4.6.1 Detumbling Magnetic Controllers -- 4.6.2 Y‐Momentum Wheel Controller -- 4.6.3 Three‐axis Reaction Wheel Controller -- 4.7 ADCS Sensor and Actuator Hardware -- 4.7.1 Three‐Axis Magnetometers -- 4.7.2 Sun Sensors -- 4.7.3 Star Trackers -- 4.7.4 MEMS Rate Sensors -- 4.7.5 Magnetorquers -- 4.7.6 Reaction/Momentum Wheels -- 4.7.7 Orbit Control Sensors and Actuators -- 4.7.8 Integrated ADCS Modules -- References -- Chapter 5 I‐2d Propulsion Systems -- 5.1 Introduction -- 5.2 Propulsion Elements -- 5.3 Key Elements in the Development of Micropropulsion Systems -- 5.4 Propulsion System Technologies -- 5.4.1 Chemical Propulsion Technologies -- 5.4.1.1 Cold Gas Thruster -- 5.4.1.2 Monopropellant Engines -- 5.4.1.3 Bipropellant Engines -- 5.4.1.4 Solid Propellant Engines -- 5.4.2 Electric Propulsion Technologies -- 5.4.2.1 Resistojet -- 5.4.2.2 Gridded Ion Engine (GIE) -- 5.4.2.3 Hall Effect Thruster -- 5.4.2.4 Pulsed Plasma Thruster (PPT) and Vacuum Arc Thruster (VAT) -- 5.4.2.5 Colloid/Electrospray and Field‐emission Thruster -- 5.5 Mission Elements -- 5.5.1 Orbit Change -- 5.5.2 Drag Compensation -- 5.5.3 Deorbiting -- 5.5.4 Attitude Control -- 5.6 Survey of All Existing Systems -- 5.7 Future Prospect -- References -- Chapter 6 I‐2e Communications -- 6.1 Introduction -- 6.2 Regulatory Considerations -- 6.3 Satellite Link Characteristics -- 6.3.1 Digital Modulation -- 6.4 Channel Coding -- 6.4.1 Convolutional Codes -- 6.4.2 Block Codes -- 6.5 Data Link Layer -- 6.6 Hardware -- 6.6.1 Antennas -- 6.6.2 Oscillators -- 6.6.3 PLLs and Synthesizers -- 6.6.4 Mixers -- 6.6.5 Receiver -- 6.6.6 Transmitter -- 6.6.7 Transceivers -- 6.7 Testing -- 6.7.1 Modulation Quality -- 6.7.2 Power Measurement -- 6.7.3 Spectrum Analysis -- References -- Chapter 7 I‐2f Structural Subsystem -- 7.1 Definition and Tasks. 7.2 Existing State‐of‐the‐Art Structures for CubeSats -- 7.3 Materials and Thermal Considerations for Structural Design -- 7.4 Design Parameters and Tools -- 7.4.1 Structural Design Parameters -- 7.4.2 Thermal Design Considerations -- 7.5 Design Challenges -- 7.6 Future Prospects -- References -- Chapter 8 I‐2g Power Systems -- 8.1 Introduction -- 8.2 Power Source: Photovoltaic Solar Cells and Solar Array -- 8.3 Energy Storage: Lithium‐ion Batteries -- 8.4 SA‐battery Power Conditioning: DET and MPPT -- 8.5 Battery Charging Control Loops -- 8.6 Bus Power Conditioning and Distribution: Load Converters and Distribution Switches -- 8.7 Flight Switch Subsystem -- 8.8 DC/DC Converters -- 8.8.1 Buck Converter -- 8.8.2 Boost Converter -- 8.8.3 SEPIC Converter -- 8.9 Power System Sizing: Power Budget, Solar Array, and Battery Selection -- 8.10 Conclusions -- References -- Chapter 9 I‐2h Thermal Design, Analysis, and Test -- 9.1 Introduction -- 9.1.1 Thermal Challenges -- 9.2 Typical Thermal Loads -- 9.2.1 Heat Exchange Calculation -- 9.2.2 Thermal Environment in Earth Orbit -- 9.2.2.1 Direct Solar Radiation -- 9.2.2.2 Albedo Radiation -- 9.2.2.3 Earth Infrared Radiation -- 9.3 Active and Passive Designs -- 9.3.1 Surface Finishes -- 9.3.2 Insulation -- 9.3.3 Radiators -- 9.3.4 Interface Connections and Heat Pipes -- 9.3.5 Electrical Heaters -- 9.4 Design Approach and Tools -- 9.4.1 Numerical Methods -- 9.4.2 Modeling Approaches -- 9.4.2.1 Top‐Down Approach -- 9.4.2.2 Bottom‐Up Approach -- 9.4.3 Model Uncertainty and Margins -- 9.4.3.1 Modeling Uncertainty -- 9.4.3.2 Temperature Margins -- 9.4.4 Thermal Design Tools -- 9.5 Thermal Tests -- 9.5.1 Types of Thermal Test -- 9.5.1.1 Thermal Balance Test -- 9.5.1.2 Thermal‐Vacuum Test -- 9.5.1.3 Thermal Cycle Test -- 9.5.2 Guidelines for Thermal‐Vacuum Test Preparations -- References. Chapter 10 I‐2i Systems Engineering and Quality Assessment -- 10.1 Introduction -- 10.2 Systems Engineering Definition and Process -- 10.2.1 Architecture Development Process -- 10.3 Space Project Management: Role of Systems Engineers -- 10.4 ECSS and Other Standards -- 10.5 Document, Risk Control, and Resources -- 10.6 Changing Trends in SE and Quality Assessment for Nanosatellites -- References -- Chapter 11 I‐2j Integration and Testing -- 11.1 Introduction -- 11.1.1 Integration -- 11.1.2 Testing -- 11.2 Overall Tasks -- 11.2.1 Integration Tasks -- 11.2.2 Testing Tasks -- 11.2.2.1 Functional Tests -- 11.2.2.2 Mass Properties -- 11.2.2.3 Environmental Tests -- 11.3 Typical Flow -- 11.4 Test Philosophies -- 11.4.1 Test Stages -- 11.4.2 Test Models -- 11.4.3 Test Philosophies -- 11.5 Typical System Integration Process -- 11.6 Typical Test Parameters and Facilities -- 11.6.1 Typical Test Parameters -- 11.6.2 Typical Test Facilities -- 11.7 Burden of Integration and Testing -- 11.7.1 I& -- T Costs -- 11.7.2 I& -- T Schedule -- 11.8 Changing Trends in Nanosatellite Testing -- References -- Chapter 12 I‐3a Scientific Payloads -- 12.1 Introduction -- 12.2 Categorization -- 12.3 Imagers -- 12.3.1 MCubed‐2/COVE -- 12.3.2 SwissCube -- 12.3.3 AAReST -- 12.4 X‐ray Detectors -- 12.4.1 MinXSS -- 12.4.2 HaloSat -- 12.4.3 HERMES -- 12.4.4 CXBN -- 12.4.5 MiSolFA -- 12.5 Spectrometers -- 12.5.1 SOLSTICE -- 12.5.2 OPAL -- 12.5.3 Lunar IceCube/BIRCHES -- 12.5.4 GRIFEX -- 12.5.5 HyperCube -- 12.6 Photometers -- 12.6.1 XPS -- 12.6.2 BRITE-Photometer -- 12.6.3 ExoPlanet and ASTERIA -- 12.7 GNSS Receivers -- 12.7.1 CYGNSS -- 12.7.2 CADRE -- 12.7.3 3Cat 2 -- 12.8 Microbolometers -- 12.8.1 CSIM -- 12.9 Radiometers -- 12.9.1 TEMPEST -- 12.10 Radar Systems -- 12.10.1 RAX -- 12.10.2 Radar Altimeters and SAR (EO). 12.10.3 SRI‐Cooperative Institute for Research in Environmental Sciences (CIRES) -- 12.11 Particle Detectors -- 12.11.1 REPTile -- 12.11.2 EPISEM -- 12.11.3 FIRE -- 12.12 Plasma Wave Analyzers -- 12.12.1 CADRE/WINCS -- 12.12.2 Dynamic Ionosphere CubeSat Experiment (DICE) -- 12.12.3 INSPIRE/CVHM -- 12.13 Biological Detectors -- 12.13.1 OREOS -- 12.14 Solar Sails -- 12.15 Conclusions -- References -- Chapter 13 I‐3b In‐orbit Technology Demonstration -- 13.1 Introduction -- 13.2 Activities of Space Agencies -- 13.2.1 NASA -- 13.2.2 ESA -- 13.2.3 DLR -- 13.3 Nanosatellites -- 13.3.1 IOV/IOD Providers -- 13.3.2 SSTL -- 13.3.3 Alba Orbital -- 13.3.4 GAUSS Srl -- 13.3.5 Open Cosmos -- 13.3.6 Deep Space ESA Calls -- 13.4 Microsatellites -- 13.4.1 BIRD and TET -- 13.4.2 TDS -- 13.4.3 Euro IOD -- 13.5 ISS -- 13.5.1 NanoRacks -- 13.5.2 Bartolomeo -- 13.5.3 ICE Cubes -- 13.5.4 Starlab -- References -- Chapter 14 I‐3c Nanosatellites as Educational Projects -- 14.1 Introduction -- 14.2 Satellites and Project‐based Learning -- 14.2.1 A Brief History of Educational Satellite Projects -- 14.2.2 Project Classification -- 14.3 University Satellite Programs -- 14.3.1 Aalborg University -- 14.3.2 Technische Universitat Berlin -- 14.3.3 University of Tokyo -- 14.4 Outcome and Success Criteria -- 14.5 Teams and Organizational Structure -- 14.6 Challenges and Practical Experiences -- 14.6.1 Staff Turnover -- 14.6.2 Development of Multidisciplinary Skills -- 14.6.3 External Experts -- 14.6.4 Project Documentation -- 14.6.5 Testing -- 14.6.6 Software -- 14.6.7 Ground Station -- 14.7 From Pure Education to Powerful Research Tools -- References -- Chapter 15 I‐3d Formations of Small Satellites -- 15.1 Introduction -- 15.2 Constellations and Formations -- 15.2.1 Definitions for Multivehicle Systems -- 15.3 Orbit Dynamics -- 15.4 Satellite Configurations. 15.4.1 Definition of Walker Delta Pattern Constellation.
9781119042068
Microspacecraft.
Electronic books.
TL795.4 .N366 2020