Paik, Jeom Kee.

Ultimate Limit State Analysis and Design of Plated Structures. - 2nd ed. - 1 online resource (672 pages)

Intro -- Title Page -- Copyright -- Contents -- Preface -- About the Author -- How to Use This Book -- Chapter 1 Principles of Limit State Design -- 1.1 Structural Design Philosophies -- 1.1.1 Reliability-Based Design Format -- 1.1.2 Partial Safety Factor-Based Design Format -- 1.1.3 Failure Probability-Based Design Format -- 1.1.4 Risk-Based Design Format -- 1.2 Allowable Stress Design Versus Limit State Design -- 1.2.1 Serviceability Limit State Design -- 1.2.2 Ultimate Limit State Design -- 1.2.3 Fatigue Limit State Design -- 1.2.4 Accidental Limit State Design -- 1.3 Mechanical Properties of Structural Materials -- 1.3.1 Characterization of Material Properties -- 1.3.1.1 Young´s Modulus, E -- 1.3.1.2 Poisson´s Ratio, v -- 1.3.1.3 Elastic Shear Modulus, G -- 1.3.1.4 Proportional Limit, σP -- 1.3.1.5 Yield Strength, σY, and Yield Strain, Y -- 1.3.1.6 Strain-Hardening Tangent Modulus, Eh, and Strain-Hardening Strain, h -- 1.3.1.7 Ultimate Tensile Strength, σT -- 1.3.1.8 Necking Tangent Modulus, En -- 1.3.1.9 Fracture Strain, F, and Fracture Stress, σF -- 1.3.2 Elastic-Perfectly Plastic Material Model -- 1.3.3 Characterization of the Engineering Stress-Engineering Strain Relationship -- 1.3.4 Characterization of the True Stress-True Strain Relationship -- 1.3.5 Effect of Strain Rates -- 1.3.6 Effect of Elevated Temperatures -- 1.3.7 Effect of Cold Temperatures -- 1.3.8 Yield Condition Under Multiple Stress Components -- 1.3.9 The Bauschinger Effect: Cyclic Loading -- 1.3.10 Limits of Cold Forming -- 1.3.11 Lamellar Tearing -- 1.4 Strength Member Types for Plated Structures -- 1.5 Types of Loads -- 1.6 Basic Types of Structural Failure -- 1.7 Fabrication Related Initial Imperfections -- 1.7.1 Mechanism of Initial Imperfections -- 1.7.2 Initial Distortion Modeling -- 1.7.2.1 Plate Initial Deflection. 1.7.2.2 Column-Type Initial Deflection of a Stiffener -- 1.7.2.3 Sideways Initial Distortion of a Stiffener -- 1.7.3 Welding Residual Stress Modeling -- 1.7.4 Modeling of Softening Phenomenon -- 1.8 Age Related Structural Degradation -- 1.8.1 Corrosion Damage -- 1.8.2 Fatigue Cracks -- 1.9 Accident Induced Damage -- References -- Chapter 2 Buckling and Ultimate Strength of Plate-Stiffener Combinations -- 2.1 Structural Idealizations of Plate-Stiffener Assemblies -- 2.2 Geometric Properties -- 2.3 Material Properties -- 2.4 Modeling of End Conditions -- 2.5 Loads and Load Effects -- 2.6 Effective Width Versus Effective Breadth of Attached Plating -- 2.6.1 Shear Lag-Induced Ineffectiveness: Effective Breadth of the Attached Plating -- 2.6.2 Buckling-Induced Ineffectiveness: Effective Width of the Attached Plating -- 2.6.3 Combined Shear Lag-Induced and Buckling-Induced Ineffectiveness -- 2.7 Plastic Cross-Sectional Capacities -- 2.7.1 Axial Capacity -- 2.7.2 Shear Capacity -- 2.7.3 Bending Capacity -- 2.7.3.1 Rectangular Cross Section -- 2.7.3.2 Plate-Stiffener Combination Model Cross Section -- 2.7.4 Capacity Under Combined Bending and Axial Load -- 2.7.4.1 Rectangular Cross Section -- 2.7.4.2 Plate-Stiffener Combination Model Cross Section -- 2.7.5 Capacity Under Combined Bending, Axial Load, and Shearing Force -- 2.8 Ultimate Strength of the Plate-Stiffener Combination Model Under Bending -- 2.8.1 Cantilever Beams -- 2.8.2 Beams Simply Supported at Both Ends -- 2.8.3 Beams Simply Supported at One End and Fixed at the Other End -- 2.8.4 Beams Fixed at Both Ends -- 2.8.5 Beams Partially Rotation Restrained at Both Ends -- 2.8.6 Lateral-Torsional Buckling -- 2.9 Ultimate Strength of the Plate-Stiffener Combination Model Under Axial Compression -- 2.9.1 Large-Deflection Behavior of Straight Columns -- 2.9.2 Elastic Buckling of Straight Columns. 2.9.3 Effect of End Conditions -- 2.9.4 Effect of Initial Imperfections -- 2.9.5 Collapse Strength of Columns -- 2.9.5.1 The Johnson-Ostenfeld Formulation Method -- 2.9.5.2 The Perry-Robertson Formulation Method -- 2.9.5.3 The Paik-Thayamballi Empirical Formulation Method for a Steel Plate-Stiffener Combination Model -- 2.9.5.4 The Paik Empirical Formulation Method for an Aluminum Plate-Stiffener Combination Model -- 2.9.6 Local Web or Flange Buckling Under Axial Compression -- 2.9.7 Lateral-Torsional Buckling Under Axial Compression -- 2.10 Ultimate Strength of the Plate-Stiffener Combination Model Under Combined Axial Compression and Bending -- 2.10.1 The Modified Perry-Robertson Formulation Method -- 2.10.2 Lateral-Torsional Buckling Under Combined Axial Compression and Bending -- References -- Chapter 3 Elastic and Inelastic Buckling Strength of Plates Under Complex Circumstances -- 3.1 Fundamentals of Plate Buckling -- 3.2 Geometric and Material Properties -- 3.3 Loads and Load Effects -- 3.4 Boundary Conditions -- 3.5 Linear Elastic Behavior -- 3.6 Elastic Buckling of Simply Supported Plates Under Single Types of Loads -- 3.7 Elastic Buckling of Simply Supported Plates Under Two Load Components -- 3.7.1 Biaxial Compression or Tension -- 3.7.2 Longitudinal Axial Compression and Longitudinal In-Plane Bending -- 3.7.3 Transverse Axial Compression and Longitudinal In-Plane Bending -- 3.7.4 Longitudinal Axial Compression and Transverse In-Plane Bending -- 3.7.5 Transverse Axial Compression and Transverse In-Plane Bending -- 3.7.6 Biaxial In-Plane Bending -- 3.7.7 Longitudinal Axial Compression and Edge Shear -- 3.7.8 Transverse Axial Compression and Edge Shear -- 3.7.9 Longitudinal In-Plane Bending and Edge Shear -- 3.7.10 Transverse In-Plane Bending and Edge Shear. 3.8 Elastic Buckling of Simply Supported Plates Under More than Three Load Components -- 3.9 Elastic Buckling of Clamped Plates -- 3.9.1 Single Types of Loads -- 3.9.2 Combined Loads -- 3.10 Elastic Buckling of Partially Rotation Restrained Plates -- 3.10.1 Rotational Restraint Parameters -- 3.10.2 Longitudinal Axial Compression -- 3.10.2.1 Partially Rotation Restrained at Long Edges and Simply Supported at Short Edges -- 3.10.2.2 Partially Rotation Restrained at Short Edges and Simply Supported at Long Edges -- 3.10.2.3 Partially Rotation Restrained at Both Long and Short Edges -- 3.10.3 Transverse Axial Compression -- 3.10.3.1 Partially Rotation Restrained at Long Edges and Simply Supported at Short Edges -- 3.10.3.2 Partially Rotation Restrained at Short Edges and Simply Supported at Long Edges -- 3.10.3.3 Partially Rotation Restrained at Both Long and Short Edges -- 3.10.4 Combined Loads -- 3.11 Effect of Welding Induced Residual Stresses -- 3.12 Effect of Lateral Pressure Loads -- 3.13 Effect of Opening -- 3.13.1 Longitudinal Axial Compression -- 3.13.2 Transverse Axial Compression -- 3.13.3 Edge Shear -- 3.13.4 Combined Loads -- 3.14 Elastic-Plastic Buckling Strength -- 3.14.1 Single Types of Loads -- 3.14.1.1 Plates Without Opening -- 3.14.1.2 Perforated Plates -- 3.14.2 Combined Loads -- References -- Chapter 4 Large-Deflection and Ultimate Strength Behavior of Plates -- 4.1 Fundamentals of Plate Collapse Behavior -- 4.2 Structural Idealizations of Plates -- 4.2.1 Geometric Properties -- 4.2.2 Material Properties -- 4.2.3 Loads and Load Effects -- 4.2.4 Fabrication Related Initial Imperfections -- 4.2.5 Boundary Conditions -- 4.3 Nonlinear Governing Differential Equations of Plates -- 4.4 Elastic Large-Deflection Behavior of Simply Supported Plates -- 4.4.1 Lateral Pressure Loads -- 4.4.2 Combined Biaxial Loads. 4.4.3 Interaction Effect Between Biaxial Loads and Lateral Pressure -- 4.4.4 Interaction Effect Between Biaxial and Edge Shear Loads -- 4.5 Elastic Large-Deflection Behavior of Clamped Plates -- 4.5.1 Lateral Pressure Loads -- 4.5.2 Combined Biaxial Loads -- 4.5.3 Interaction Effect Between Biaxial Loads and Lateral Pressure -- 4.6 Elastic Large-Deflection Behavior of Partially Rotation Restrained Plates -- 4.6.1 Longitudinal Compression -- 4.6.2 Transverse Compression -- 4.6.3 Biaxial Compression -- 4.7 Effect of the Bathtub Deflection Shape -- 4.8 Evaluation of In-Plane Stiffness Reduction Due to Deflection -- 4.8.1 Effective Width -- 4.8.2 Effective Length -- 4.8.3 Effective Shear Modulus -- 4.9 Ultimate Strength -- 4.9.1 Ultimate Strength by Gross Yielding -- 4.9.2 Rigid-Plastic Theory Method -- 4.9.2.1 Lateral Pressure Loads -- 4.9.2.2 Axial Compressive Loads -- 4.9.3 Membrane Stress-Based Method -- 4.9.3.1 Ultimate Strength Conditions -- 4.9.3.2 Lateral Pressure Loads -- 4.9.3.3 Combined Longitudinal Axial Loads and Lateral Pressure -- 4.9.3.4 Combined Transverse Axial Loads and Lateral Pressure -- 4.9.3.5 Edge Shear -- 4.9.3.6 Combined Edge Shear Loads and Lateral Pressure -- 4.9.3.7 Combined Biaxial Loads, Edge Shear Loads, and Lateral Pressure -- 4.10 Effect of Opening -- 4.10.1 Single Types of Loads -- 4.10.2 Biaxial Compression -- 4.10.3 Combined Longitudinal Compression and Edge Shear -- 4.10.4 Combined Transverse Compression and Edge Shear -- 4.11 Effect of Age Related Structural Deterioration -- 4.11.1 Corrosion Damage -- 4.11.2 Fatigue Cracking Damage -- 4.12 Effect of Local Denting Damage -- 4.13 Average Stress-Average Strain Relationship of Plates -- 4.13.1 Pre-buckling or Undeflected Regime -- 4.13.2 Post-buckling or Deflected Regime -- 4.13.3 Post-ultimate Strength Regime -- References. Chapter 5 Elastic and Inelastic Buckling Strength of Stiffened Panels and Grillages.

9781119367789


Building, Iron and steel.


Electronic books.

TA684 .P355 2018

624.1821