Poisel, Richard.

RF Electronics for Electronic Warfare. - 1st ed. - 1 online resource (717 pages)

RF Electronics for Electronic Warfare -- Table of Contents -- Chapter 1 Electronic Warfare -- 1.1 Introduction -- 1.2 Overview of Electronic Warfare -- 1.2.1 Electronic Support -- 1.2.2 Electronic Attack -- 1.2.3 Electronic Protect -- 1.2.4 EW Effects -- 1.3 Operational Scenarios -- 1.4 EW Target Frequency Ranges -- 1.4.1 High Frequency -- 1.4.2 Very High Frequency -- 1.4.3 Ultrahigh Frequency -- 1.4.4 Superhigh Frequency (SHF) -- 1.4.5 Summary -- 1.5 EW System Block Diagram -- 1.5.1 RF Signal Generation -- 1.6 Concluding Remarks -- References -- Chapter 2 Modulation and Modulators -- 2.1 Introduction -- 2.1.1 Additive White Gaussian Noise Channel -- 2.2 Modulations -- 2.3 Analog Modulations -- 2.3.1 Amplitude Modulation -- 2.3.2 Phase and Frequency Analog Modulation -- 2.3.3 PM Modulation -- 2.3.4 FM and PM Modulators -- 2.4 Digital Modulations -- 2.4.1 Introduction -- 2.4.2 Amplitude Shift Keying -- 2.4.3 Pulse Amplitude Modulation: Frequency Shift Keying -- 2.4.4 FSK -- 2.4.5 PSK -- 2.5 Polar Modulation -- 2.6 Noise Generators -- 2.7 Concluding Remarks -- References -- Chapter 3 EW Exciters -- 3.1 Introduction -- 3.2 Oscillator Basics -- 3.3 Principles of Oscillator Operation -- 3.3.1 LC Resonators in Oscillators -- 3.3.2 Crystal Resonators -- 3.3.3 Microelectromechanical Resonators -- 3.4 Phase Locked Loop Synthesisers -- 3.4.1 Introduction -- 3.4.2 PLL Basics -- 3.4.3 Varactor Diode -- 3.4.4 MEMS Varactors -- 3.5 Direct Digital Synthesis -- 3.5.1 Introduction -- 3.5.2 DDS Architecture -- 3.5.3 Polar Modulator -- 3.5.4 Digital vs Analog Performance -- 3.5.5 DDS Switching Characteristics -- 3.5.6 Modulation and Complex Waveform Generation -- 3.6 Oscillator Phase Noise -- 3.6.1 Introduction -- 3.6.2 VCO Phase Noise Basics -- 3.6.3 Analysis -- 3.6.4 Equipartition Theorem -- 3.7 Concluding Remarks -- References. Chapter 4 Introduction to RF Amplifiers -- 4.1 Introduction -- 4.2 Amplifier Classes -- 4.2.1 Amplifier Topology -- 4.2.2 Biasing for RF Devices -- 4.2.3 Amplifier Bias Classes of Operation -- 4.2.4 Amplifier Classes -- 4.2.5 Miller's Theorem -- 4.2.6 Frequency Response of Amplifiers -- 4.2.7 Some High-Frequency Analysis Techniques -- 4.3 Amplifier Parameters -- 4.3.1 Determining the Lower 3-dB Frequency -- 4.3.2 Selecting Values for the Coupling and Bypass Capacitors -- 4.4 Amplifier Topologies -- 4.4.1 Bipolar Transistor Configurations -- 4.4.2 MOSFET Configurations -- 4.4.3 Summary -- 4.5 Active Loads -- 4.6 Gain -- 4.7 Wideband Amplifiers -- 4.7.1 Distributed Amplifiers -- 4.7.2 Balanced Amplifiers -- 4.7.3 Resistive Feedback Amplifiers -- 4.8 Switched-Mode RF Amplifiers -- 4.8.1 Introduction -- 4.8.2 Class D PA -- 4.8.3 Class E PA -- 4.8.3 Class F PA -- 4.9 Concluding Remarks -- Appendix 4A Wilkinson Power Divider/Combiner -- References -- Chapter 5 Semiconductor Technologies -- 5.1 Introduction -- 5.2 Semiconductor Devices -- 5.3 Microwave Semiconductor DevicesThere -- 5.3.1 Bipolar Transistors -- 5.3.2 Field-Effect Transistors -- 5.3.3 Molecular Beam Epitaxy Technique -- 5.3.4 Bipolar Technology vs MOSFET Technology -- 5.4 Bipolar Junction Transistors -- 5.4.1 Bipolar Transistor Construction -- 5.4.2 Operating Characteristics of BJTs -- 5.5 Field Effect Transistors -- 5.5.1 CMOS -- 5.6 PA Device Technologies and Architectures -- 5.6.1 Metal-Oxide-Silicon Field-Effect Transistor -- 5.6.2 Vertically Diffused MOSFET -- 5.6.3 Laterally Diffused MOSFET Transistors -- 5.6.4 Technological Development -- 5.6.5 Advantages Compared to Bipolar Technology -- 5.6.6 Junction FET -- 5.6.7 High Electron Mobility Transistors -- 5.7 GaAs and GaN RF Power Amplifiers -- 5.7.1 III-V Semiconductors -- 5.7.2 Other Transistor Types -- 5.7.3 GaAs RF Power Amplifiers. 5.7.4 GaN RF Power Amplifiers -- 5.7.5 Advantages and Disadvantages -- 5.7.6 Summary -- 5.8 Comparing GaN-on-SiC Power Transistor Technology with GaAs and Si -- 5.8.1 Silicon LDMOS -- 5.8.2 GaAs FET Power Devices -- 5.8.3 GaN-on-SiC Technology -- 5.8.4 GaN Technology Overview -- 5.9 Miller Plateau Region -- 5.10 MICs and MMICs -- 5.10.1 Monolithic Microwave Integrated Circuits -- 5.11 Concluding Remarks -- References -- Chapter 6 BJT Amplifiers -- 6.1 Introduction -- 6.2 BJT Models -- 6.2.1 BJT Hybrid-π High-frequency Model -- 6.2.2 BJT T-Model -- 6.3 Common Emitter -- 6.3.1 Common Emitter Amplifier -- 6.3.2 Emitter Degeneration -- 6.3.3 Bandwidth -- 6.3.4 Common-Emitter Amplifier High-Frequency Response -- 6.3.5 Summary -- 6.4 Common Collector -- 6.4.1 Common Collector Characteristics -- 6.4.2 Common-Collector Amplifier Approximate High Cutoff Frequency H -- 6.4.3 Common-Collector Amplifier Approximate Low Cutoff Frequency ωL -- 6.5 Common Base -- 6.5.1 Low-Frequency Characteristics -- 6.5.2 Common-Base Amplifier Low Cutoff Frequency, ωL, Estimation -- 6.5.3 Common-Base Amplifier High Cutoff Frequency, H , w Estimation -- 6.5.4 Active Loads for the CB Amplifier -- 6.5.5 Common-Base Amplifiers -- 6.5.6 Common-Base Amplifier High-Frequency Response -- 6.6 Cascode Amplifiers -- 6.6.1 BJT Cascode -- 6.7 Darlington Pair -- 6.8 Concluding Remarks -- 6.8.1 Bipolar Transistor Amplifier Summary -- References -- Chapter 7 MOSFET Amplifiers -- 7.1 Introduction -- 7.2 Long- and Short-Channel MOSFETs -- 7.3 MOSFET High-Frequency Model -- 7.3.1 High-Frequency MOSFET Model -- 7.3.2 Unity-Gain Frequency -- 7.3.3 Common Source -- 7.4 Common Source -- 7.4.1 CS MOSFET Characteristics -- 7.4.2 Source Degeneration. -- 7.4.3 CS MOSFET Amplifier Frequency Response -- 7.5 Common Drain -- 7.5.1 Characteristics of the Source Follower. 7.5.2 MOSFET CD High-Frequency Response -- 7.6 Common Gate -- 7.6.1 Low-Frequency Characteristics -- 7.6.2 Common-Gate Amplifier Low Cutoff Frequency ωLEstimation -- 7.6.3 MOSFET CG High-Frequency Response -- 7.7 MOSFET Cascode -- 7.8 Concluding Remarks -- References -- Chapter 8 Active Device Biasing -- 8.1 Introduction -- 8.2 BJT Amplifier Biasing -- 8.2.1 Base-Biased Emitter Feedback -- 8.2.2 Voltage Divider Emitter Feedback -- 8.2.3 Diode Temperature Compensation -- 8.2.4 Collector Feedback -- 8.2.5 Class C BJT Bias -- 8.2.6 Transformer Biasing -- 8.2.7 Highly Stable Active Bias for High-Frequency Amplifiers -- 8.2.8 Temperature Reference Circuits -- 8.2.9 BJT LNA Biasing -- 8.3 MOSFET Bias -- 8.3.1 FET Active Feedback Bias Example -- 8.3.2 Biasing MOSFET Amplifiers -- 8.3.3 Cascode MOS LNA Bias -- 8.4 Passive Bias Methods -- 8.5 Active Bias Circuit -- 8.5.1 DC Biasing of RF Feedback Amplifiers -- 8.6 MMIC Amplifier Biasing -- 8.7 Concluding Remarks -- References -- Chapter 9 RF Power Amplifiers -- 9.1 Introduction -- 9.2 Power Amplifiers -- 9.2.1 Typical Solid-State Power Amplifiers -- 9.2.2 Basic Power Modules -- 9.2.3 Broadband Power Amplifier Considerations -- 9.3 Power Amplifier Parameters -- 9.3.1 Crest Factor -- 9.3.2 Peak Envelope Power -- 9.3.3 Stage Matching -- 9.3.4 Bias Circuits and Bias Circuit Instabilities -- 9.3.5 Efficiency -- 9.4 Push-Pull Architectures -- 9.4.1 Class E Push-Pull Architecture -- 9.4.2 Crossover Distortion -- 9.5 Doherty Amplifier -- 9.6 Safety Considerations -- 9.7 PA Matching -- 9.7.1 Frequency Response of Series/Parallel RLC Networks -- 9.7.2 Adding L and C Elements to Matching Networks -- 9.7.3 Parallel and Series Circuit Equivalents -- 9.7.4 Impedance Matching with Microstrip Lines -- 9.8 Diode and Transistor Bias for Linear Power Amplifiers -- 9.8.1 Power MOSFET Bias -- 9.8.2 Power LDMOS Bias. 9.9 Switched Power Amplifiers -- 9.9.1 Introduction -- 9.9.2 Architectures -- 9.9.3 Load Lines Revisited -- 9.10 Power Gate and Base Drivers -- 9.11 Microwave Monolithic Power Amplifiers -- 9.12 Power Amplifier Reference Design -- 9.12.1 LS2641 General Description -- 9.12.2 Transmission Line Transformers -- 9.12.3 Amplifier Performance -- 9.13 Concluding Remarks -- References -- Chapter 10 Amplifier Stability -- 10.1 Introduction -- 10.2 Negative Resistance -- 10.3 Stability Circles -- 10.3.1 Rollett Stability Factor -- 10.4 Stability of Active Two-Ports -- 10.4.1 Stabilizing Active Two-Ports -- 10.5 Neutralization -- 10.5.1 Summary -- 10.6 Concluding Remarks -- References -- Chapter 11 Power Amplifier Linearity -- 11.1 Introduction -- 11.2 Gain Compression -- 11.2.1 Apparent Gain -- 11.2.2 Calculated IIP2/IIP3 -- 11.2.3 Dynamic Range -- 11.2.4 Cascade -- 11.3 Measures of Linearity -- 11.3.1 Carrier-to-Intermodulation Ratio -- 11.3.2 Noise Power Ratio -- 11.3.3 Adjacent Channel Power Ratio -- 11.3.4 Error Vector Magnitude -- 11.3.5 Deformed Constellations -- 11.3.6 AM/AM and AM/PM Conversion -- 11.4 Power Amplifier Linearization Techniques -- 11.4.1 Introduction -- 11.4.2 Power Back-Off -- 11.4.3 Distortion Feedback -- 11.5 Feedback and Feedforward Spurious Reduction Techniques in Power Amplifiers -- 11.5.1 Introduction -- 11.5.2 Feedforward Distortion Reduction -- 11.5.3 Feedback Distortion Reduction -- 11.6 Other Amplifier Linearization Techniques -- 11.6.1 Cartesian Feedback -- 11.6.2 Constant Envelope Amplifiers -- 11.6.3 Predistortion -- 11.6.5 Envelope Elimination and Restoral -- 11.6.6 LINC -- 11.7 Load-Pull Techniques and Their Applications in Power Amplifier Design -- 11.7.1 Basics of Load-Pull -- 11.7.2 Common Load-Pull Techniques -- 11.7.3 PA Design -- 11.7.4 Conclusion -- 11.8 Concluding Remarks -- 11.8.1 Linearization Techniques Summary. References.

9781630817060


Electronics in military engineering.


Electronic books.

UG485 / .P657 2019

623.043