Singh, Jai.

Optical Properties of Materials and Their Applications. - 2nd ed. - 1 online resource (670 pages) - Wiley Series in Materials for Electronic and Optoelectronic Applications Series . - Wiley Series in Materials for Electronic and Optoelectronic Applications Series .

Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Chapter 1 Fundamental Optical Properties of Materials I -- 1.1 Introduction -- 1.2 Optical Constants n and K -- 1.2.1 Refractive Index and Extinction Coefficient -- 1.2.2 n and K, and Kramers-Kronig Relations -- 1.3 Refractive Index and Dispersion -- 1.3.1 Cauchy Dispersion Relation -- 1.3.2 Sellmeier Equation -- 1.3.3 Refractive Index of Semiconductors -- 1.3.3.1 Refractive Index of Crystalline Semiconductors -- 1.3.3.2 Bandgap and Temperature Dependence -- 1.3.4 Refractive Index of Glasses -- 1.3.5 Wemple-DiDomenico Dispersion Relation -- 1.3.6 Group Index -- 1.4 The Swanepoel Technique: Measurement of n and α for Thin Films on Substrates -- 1.4.1 Uniform Thickness Films -- 1.4.2 Thin Films with Non‐uniform Thickness -- 1.5 Transmittance and Reflectance of a Partially Transparent Plate -- 1.6 Optical Properties and Diffuse Reflection: Schuster-Kubelka-Munk Theory -- 1.7 Conclusions -- Acknowledgments -- References -- Chapter 2 Fundamental Optical Properties of Materials II -- 2.1 Introduction -- 2.2 Lattice or Reststrahlen Absorption and Infrared Reflection -- 2.3 Free Carrier Absorption (FCA) -- 2.4 Band‐to‐Band or Fundamental Absorption (Crystalline Solids) -- 2.5 Impurity Absorption and Rare‐Earth Ions -- 2.6 Effect of External Fields -- 2.6.1 Electro‐Optic Effects -- 2.6.2 Electro‐Absorption and Franz-Keldysh Effect -- 2.6.3 Faraday Effect -- 2.7 Effective Medium Approximations -- 2.8 Conclusions -- Acknowledgments -- References -- Chapter 3 Optical Properties of Disordered Condensed Matter -- 3.1 Introduction -- 3.2 Fundamental Optical Absorption (Experimental) -- 3.2.1 Amorphous Chalcogenides -- 3.2.2 Hydrogenated Nano‐Crystalline Silicon (nc‐Si:H) -- 3.3 Absorption Coefficient (Theory) -- 3.4 Compositional Variation of the Optical Bandgap. 3.4.1 In Amorphous Chalcogenides -- 3.5 Conclusions -- References -- Chapter 4 Optical Properties of Glasses -- 4.1 Introduction -- 4.2 The Refractive Index -- 4.3 Glass Interfaces -- 4.4 Dispersion -- 4.5 Sensitivity of the Refractive Index -- 4.5.1 Temperature Dependence -- 4.5.2 Stress Dependence -- 4.5.3 Magnetic Field Dependence-The Faraday Effect -- 4.5.4 Chemical Perturbations-Molar Refractivity -- 4.6 Glass Color -- 4.6.1 Coloration by Colloidal Metals and Semiconductors -- 4.6.2 Optical Absorption in Rare‐Earth‐Doped Glass -- 4.6.3 Absorption by 3d Metal Ions -- 4.7 Fluorescence in Rare‐Earth‐Doped Glass -- 4.8 Glasses for Fiber Optics -- 4.9 Refractive Index Engineering -- 4.10 Glass and Glass-Fiber Lasers and Amplifiers -- 4.11 Valence Change Glasses -- 4.12 Transparent Glass Ceramics -- 4.12.1 Introduction -- 4.12.2 Theoretical Basis for Transparency -- 4.12.3 Rare‐Earth‐Doped Transparent Glass Ceramics for Active Photonics -- 4.12.4 Ferroelectric Transparent Glass Ceramics -- 4.12.5 Transparent Glass Ceramics for X‐ray Storage Phosphors -- 4.13 Conclusions -- References -- Chapter 5 Concept of Excitons -- 5.1 Introduction -- 5.2 Excitons in Crystalline Solids -- 5.2.1 Excitonic Absorption in Crystalline Solids -- 5.3 Excitons in Amorphous Semiconductors -- 5.3.1 Excitonic Absorption in Amorphous Solids -- 5.4 Excitons in Organic Semiconductors -- 5.4.1 Photoexcitation and Formation of Excitons -- 5.4.1.1 Photoexcitation of Singlet Excitons Due to Exciton-Photon Interaction -- 5.4.1.2 Excitation of Triplet Excitons -- 5.4.2 Exciton Up‐Conversion -- 5.4.3 Exciton Dissociation -- 5.4.3.1 Conversion from Frenkel to CT Excitons -- 5.4.3.2 Dissociation of CT Excitons -- 5.5 Conclusions -- References -- Chapter 6 Photoluminescence -- 6.1 Introduction -- 6.2 Fundamental Aspects of Photoluminescence (PL) in Materials. 6.2.1 Intrinsic Photoluminescence -- 6.2.2 Extrinsic Photoluminescence -- 6.2.3 Up‐Conversion Photoluminescence (UCPL) -- 6.2.4 Other Related Optical Transitions -- 6.3 Experimental Aspects -- 6.3.1 Static PL Spectroscopy -- 6.3.2 Photoluminescence Excitation Spectroscopy (PLE) and Photoluminescence Absorption Spectroscopy (PLAS) -- 6.3.3 Time Resolved Spectroscopy (TRS) -- 6.3.4 Time‐Correlated Single Photon Counting (TCSPC) -- 6.3.5 Frequency‐Resolved Spectroscopy (FRS) -- 6.3.6 Quadrature Frequency Resolved Spectroscopy (QFRS) -- 6.4 Photoluminescence Lifetime Spectroscopy of Amorphous Semiconductors by QFRS Technique -- 6.4.1 Overview -- 6.4.2 Dual‐Phase Double Lock‐in (DPDL) QFRS Technique -- 6.4.3 Exploring Broad PL Lifetime Distribution in a‐Si:H by Wideband QFRS -- 6.4.3.1 Effects of Excitation Intensity, Excitation, and Emission Energies -- 6.4.3.2 Temperature Dependence -- 6.4.3.3 Effect of Electric and Magnetic Fields -- 6.4.4 Residual PL Decay of a‐Si:H -- 6.5 QFRS on Up‐Conversion Photoluminescence (UCPL) of RE‐Doped Materials -- 6.6 Conclusions -- Acknowledgments -- References -- Chapter 7 Photoluminescence, Photoinduced Changes, and Electroluminescence in Noncrystalline Semiconductors -- 7.1 Introduction -- 7.2 Photoluminescence -- 7.2.1 Radiative Recombination Operator and Transition Matrix Element -- 7.2.2 Rates of Spontaneous Emission -- 7.2.2.1 At Nonthermal Equilibrium -- 7.2.2.2 At Thermal Equilibrium -- 7.2.2.3 Determining E0 -- 7.2.3 Results of Spontaneous Emission and Radiative Lifetime -- 7.2.4 Temperature Dependence of PL -- 7.2.5 Excitonic Concept -- 7.3 Photoinduced Changes in Amorphous Chalcogenides -- 7.3.1 Effect of Photo‐Excitation and Phonon Interaction -- 7.3.2 Excitation of a Single Electron-Hole Pair -- 7.3.3 Pairing of Like Excited Charge Carriers. 7.4 Radiative Recombination of Excitons in Organic Semiconductors -- 7.4.1 Rate of Fluorescence -- 7.4.2 Rate of Phosphorescence -- 7.4.3 Organic Light Emitting Diodes (OLEDs) -- 7.4.3.1 Second‐ and Third‐Generation OLEDs: TADF -- 7.5 Conclusions -- Acknowledgments -- References -- Chapter 8 Photoinduced Bond Breaking and Volume Change in Chalcogenide Glasses -- 8.1 Introduction -- 8.2 Atomic‐Scale Computer Simulations of Photoinduced Volume Changes -- 8.3 Effect of Illumination -- 8.4 Kinetics of Volume Change -- 8.4.1 a‐Se -- 8.4.2 a‐As2Se3 -- 8.5 Additional Remarks -- 8.6 Conclusions -- References -- Chapter 9 Properties and Applications of Photonic Crystals -- 9.1 Introduction -- 9.2 PC Overview -- 9.2.1 Introduction to PCs -- 9.2.2 Nanoengineering of PC Architectures -- 9.2.3 Materials Selection for PCs -- 9.3 Tunable PCs -- 9.3.1 Tuning PC Response by Changing the Refractive Index of Constituent Materials -- 9.3.1.1 PC Refractive Index Tuning Using Light -- 9.3.1.2 PC Refractive Index Tuning Using an Applied Electric Field -- 9.3.1.3 Refractive Index Tuning of Infiltrated PCs -- 9.3.1.4 PC Refractive Index Tuning by Altering the Concentration of Free Carriers (Using Electric Field or Temperature) in Semiconductor‐Based PCs -- 9.3.2 Tuning PC Response by Altering the Physical Structure of the PC -- 9.3.2.1 Tuning PC Response Using Temperature -- 9.3.2.2 Tuning PC Response Using Magnetism -- 9.3.2.3 Tuning PC Response Using Strain -- 9.3.2.4 Tuning PC Response Using Piezoelectric Effects -- 9.3.2.5 Tuning PC Response Using MEMS Actuation -- 9.4 Selected Applications of PC -- 9.4.1 Waveguide Devices -- 9.4.2 Dispersive Devices -- 9.4.3 Add/Drop Multiplexing Devices -- 9.4.4 Applications of PCs for Light‐Emitting Diodes (LEDs) and Lasers -- 9.5 Conclusions -- Acknowledgments -- References. Chapter 10 Nonlinear Optical Properties of Photonic Glasses -- 10.1 Introduction -- 10.2 Photonic Glass -- 10.3 Nonlinear Absorption and Refractivity -- 10.3.1 Fundamentals -- 10.3.2 Two‐Photon Absorption -- 10.3.3 Nonlinear Refractivity -- 10.4 Nonlinear Excitation‐Induced Structural Changes -- 10.4.1 Fundamentals -- 10.4.2 Oxides -- 10.4.3 Chalcogenides -- 10.5 Conclusions -- 10.A Addendum: Perspectives on Optical Devices -- References -- Chapter 11 Optical Properties of Organic Semiconductors -- 11.1 Introduction -- 11.2 Molecular Structure of π ‐Conjugated Polymers -- 11.3 Theoretical Models -- 11.4 Absorption Spectrum -- 11.5 Photoluminescence -- 11.6 Non‐Emissive Excited States -- 11.7 Electron-Electron Interaction -- 11.8 Interchain Interaction -- 11.9 Conclusions -- References -- Chapter 12 Organic Semiconductors and Applications -- 12.1 Introduction -- 12.1.1 Device Architecture and Operation Principle -- 12.1.2 Technical Challenges and Process Integration -- 12.2 Anode Modification for Enhanced OLED Performance -- 12.2.1 Low‐Temperature High‐Performance ITO -- 12.2.1.1 Experimental Methods -- 12.2.1.2 Morphological Properties -- 12.2.1.3 Electrical Properties -- 12.2.1.4 Optical Properties -- 12.2.1.5 Compositional Analysis -- 12.2.2 Anode Modification -- 12.2.3 Electroluminescence Performance of OLEDs -- 12.3 Flexible OLEDs -- 12.3.1 Flexible OLEDs on Ultrathin Glass Substrate -- 12.3.2 Flexible Top‐Emitting OLEDs on Plastic Foils -- 12.3.2.1 Top‐Emitting OLEDs -- 12.3.2.2 Flexible TOLEDs on Plastic Foils -- 12.4 Solution‐Processable High‐Performing OLEDs -- 12.4.1 Performance of OLEDs with a Hybrid MoO3‐PEDOT:PSS Hole Injection Layer (HIL) -- 12.4.2 Morphological Properties of the MoO3‐PEDOT:PSS HIL -- 12.4.3 Surface Electronic Properties of MoO3‐PEDOT:PSS HIL -- 12.5 Conclusions -- References -- Chapter 13 Transparent White OLEDs. 13.1 Introduction-Progress in Transparent WOLEDs.

9781119506065


Condensed matter-Optical properties.
Materials-Optical properties.
Electrooptics-Materials.


Electronic books.

QC173.458.O66 .O685 2020