McCuan, John.

The Stability of Cylindrical Pendant Drops. - 1st ed. - 1 online resource (122 pages) - Memoirs of the American Mathematical Society ; v.250 . - Memoirs of the American Mathematical Society .

Cover -- Title page -- Introduction -- Chapter 1. Normalization, stability condition, and elementary properties -- 1.1. ODEs for Cylindrical Profiles -- 1.2. Elementary Properties -- 1.3. Proofs of Elementary Properties -- Chapter 2. One Parameter Families -- Definition of ₂ -- 2.1. Continuous families -- 2.2. Enclosed volume/cross-sectional area -- 2.3. Smooth families -- profile arclength -- 2.4. More on enclosed volume -- 2.5. Further properties of drop profiles -- Chapter 3. Stability -- 3.1. Separation of Variables -- 3.2. Decomposition -- 3.3. Secondary variational problems and PDE results -- 3.4. Initial Stability -- 3.5. Geometric interpretation of (H) -- 3.6. Geometric interpretation of (V) -- initial stable families -- 3.7. A surprise -- Chapter 4. Infinitely long drops -- Chapter 5. Zero gravity and soap bubbles -- Chapter 6. Open problems -- Appendix 1: Explicit formulas -- Appendix 2: Sturm-Liouville Theory -- Appendix 3: Elliptic integrals -- Acknowledgement -- Bibliography -- Back Cover.

The author considers the stability of certain liquid drops in a gravity field satisfying a mixed boundary condition. He also considers as special cases portions of cylinders that model either the zero gravity case or soap films with the same kind of boundary behavior.

9781470442026


Drops.
Spheroidal state.
Fluid mechanics.
Stability.
Liquids.


Electronic books.

QC156 .M338 2017

530.4/27