TY - BOOK AU - Gambino,Nicola AU - Joyal,André TI - On Operads, Bimodules and Analytic Functors T2 - Memoirs of the American Mathematical Society SN - 9781470441357 AV - QA169 .G363 2017 U1 - 512.62 PY - 2017/// CY - Providence PB - American Mathematical Society KW - Operads KW - Functor theory KW - Algebra, Homological KW - Electronic books N1 - Cover -- Title page -- Introduction -- Chapter 1. Background -- 1.1. Review of bicategory theory -- 1.2. \catV-categories and presentable \catV-categories -- 1.3. Distributors -- Chapter 2. Monoidal distributors -- 2.1. Monoidal \catV-categories and \catV-rigs -- 2.2. Monoidal distributors -- 2.3. Symmetric monoidal \catV-categories and symmetric \catV-rigs -- 2.4. Symmetric monoidal distributors -- Chapter 3. Symmetric sequences -- 3.1. Free symmetric monoidal \catV-categories -- 3.2. -distributors -- 3.3. Symmetric sequences and analytic functors -- 3.4. Cartesian closure of categorical symmetric sequences -- Chapter 4. The bicategory of operad bimodules -- 4.1. Monads, modules and bimodules -- 4.2. Tame bicategories and bicategories of bimodules -- 4.3. Monad morphisms and bimodules -- 4.4. Tameness of bicategories of symmetric sequences -- 4.5. Analytic functors -- Chapter 5. Cartesian closure of operad bimodules -- 5.1. Cartesian closed bicategories of bimodules -- 5.2. Monad theory in tame bicategories -- 5.3. Monad theory in bicategories of bimodules -- 5.4. Bicategories of bimodules as Eilenberg-Moore completions -- Appendix A. A compendium of bicategorical definitions -- Appendix B. A technical proof -- B.1. Preliminaries -- B.2. The proof -- Bibliography -- Back Cover N2 - The authors develop further the theory of operads and analytic functors. In particular, they introduce the bicategory \operatorname{OpdBim}_{\mathcal{V}} of operad bimodules, that has operads as 0-cells, operad bimodules as 1-cells and operad bimodule maps as 2-cells, and prove that it is cartesian closed. In order to obtain this result, the authors extend the theory of distributors and the formal theory of monads UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5110284 ER -