TY - BOOK AU - Neuville,Daniel R. AU - Cornier,Laurent AU - Caurant,Daniel AU - Montagne,Lionel TI - From Glass to Crystal: Nucleation, Growth and Phase Separation: from Research to Applications T2 - Science des Matériaux / Materials Series SN - 9782759819973 AV - QD921.F766 2017 PY - 2017/// CY - Les Ulis PB - EDP Sciences KW - Crystal growth KW - Electronic books N1 - Intro -- Contents -- Preface -- Foreword -- Introduction -- Contributors -- Main symbols and physical constants -- Abbreviations -- Main crystalline phases considered in this book -- Chapter 1. The classical nucleation theory -- 1.1. From devitrification… -- 1.2. … to the origins of CNT -- 1.3. Homogeneous nucleation -- 1.3.1. Thermodynamic considerations -- 1.3.2. Kinetic considerations -- 1.3.3. Nucleation rate -- 1.3.4. Examples of glasses with homogeneous nucleation -- 1.4. Heterogeneous nucleation -- 1.5. Induction time -- 1.6. Crystal growth -- 1.6.1. Crystal growth rate -- 1.6.2. Crystalline morphology -- 1.6.3. Constraints on crystals -- 1.6.4. Ostwald ripening -- 1.6.5. TTT diagram -- 1.7. CNT facing experiments -- 1.8. Ostwald's rule -- 1.9. Conclusion -- Chapter 2. Beyond the classical nucleation theory -- 2.1. Cluster dynamics -- 2.2. Density functional theory (DFT) -- 2.3. Validity of the Stokes-Einstein equation? -- 2.4. Models of non-classical nucleus -- 2.4.1. Introduction of a fractal surface -- 2.4.2. Diffuse interface theory (DIT) -- 2.4.3. Experimental observations of the critical nucleus? -- 2.5. Non-homogeneous disordered system -- 2.5.1. Nucleation theory in systems with static local disorder -- 2.5.2. Recent experimental observations -- 2.6. Generalized Gibbs's approach -- 2.6.1. Simplified theoretical description -- 2.6.2. Implications for nucleation/growth -- 2.6.3. Experimental observations of metastable nucleation -- 2.7. Two-step model -- 2.7.1. Description of the two-step model -- 2.7.2. Experimental observations -- 2.8. Conclusion -- Chapter 3. Thermodynamics of the glassy and the crystalline states - General kinetics of return to equilibrium -- 3.1. Stability and instability: application to oxide glasses -- 3.1.1. Stability and postulates of thermodynamics -- 3.1.2. The stability condition - Back to equilibrium; 3.1.3. Application to the specific case of the spinodal decomposition (cf. also chapter 4) -- 3.1.4. Generalization -- 3.2. Experimental methods for the determination of thermodynamic quantities at the equilibrium of a stable or metastable oxide glass or crystal -- 3.2.1. Overview of thermodynamic measurable quantities -- 3.2.2. Measurement of enthalpy increment, heat capacity and transition enthalpy -- 3.2.3. Measurement of the formation or mixing functions -- 3.2.4. Measurement of free enthalpy and derivative quantities by Knudsen Effusion Mass Spectrometry (KEMS) -- 3.2.5. Importance of coupling the methods -- 3.3. Parameters characterizing the metastable vitreous state -- 3.3.1. Thermodynamical description of the glass transition -- 3.3.2. The fictive temperature and its measurement -- 3.3.3. Configurational entropy at 0 K and its measurement -- 3.3.4. Kinetic approach of the glassy transition - order parameter -- 3.4. Phenomenological approach of recrystallisation kinetics - Return to equilibrium -- 3.4.1. Transformation by nucleation and growth - constant rate -- 3.4.2. Transformation by nucleation and growth - constant growth rate, time-dependent germination rate -- 3.4.3. General form of the kinetic equation -- 3.4.4. In practice… -- 3.5. Conclusion -- Chapter 4. Phase separation processes in glass -- 4.1. Introduction -- 4.2. Thermodynamic description of phase separation -- 4.2.1. Solubility in ideal solutions -- 4.2.2. Immiscibility in regular solutions -- 4.2.3. Description of immiscibility regions in glass -- 4.3. Kinetics of phase separation -- 4.3.1. Effect of diffusion mode -- 4.3.2. Kinetics of phase separation by nucleation and growth -- 4.3.3. Spinodal decomposition: Approach adopted by Cahn and Hilliard -- 4.4. Influence of structure on the phase separation tendency of glass; 4.4.1. Structural models: binary silicate and borate systems -- 4.4.2. Effect of the addition of elements on phase separation -- 4.4.3. Structural characterisation tools -- 4.5. Characterisation of phase separation -- 4.5.1. Metastable phase separation -- 4.5.2. Stable phase separation extending into the metastable range -- 4.5.3. Example of phase separation mode -- Chapter 5. Solid-state chemistry approach of the main crystalline phases in glass-ceramics -- 5.1. Introduction -- 5.2. Silicate crystalline phases -- 5.2.1. General features -- 5.2.2. The six silicate families -- 5.2.3. Silica polymorphs -- 5.3. Phosphates -- 5.3.1. Consequence of phosphorus pentavalency -- 5.3.2. Phosphate families -- 5.3.3. Formation of non-phosphate crystals in phosphate based glass matrices -- 5.4. Other crystalline phases -- 5.5. Conclusion -- Chapter 6. Elaboration and control of glass-ceramic microstructures -- 6.1. Interest of controlling glass-ceramic microstructure -- 6.2. Controllable parameters -- 6.2.1. Parent glass composition -- 6.2.2. Nucleation/growth mechanism -- 6.2.3. Thermal treatment -- 6.3. Elaboration processes -- 6.3.1. Classic methods -- 6.3.2. New glass-ceramic elaboration processes -- 6.4. Characterisation methods -- 6.5. Microstructure types -- 6.5.1. Spheroid microstructures -- 6.5.2. Needle-like microstructures -- 6.6. Designing glass-ceramics with desired properties by controlling the crystallisation process -- 6.6.1. Volume nucleation -- 6.6.2. Surface nucleation -- 6.6.3. Double nucleation -- 6.7. Perspectives -- Chapter 7. X-ray diffraction and glass-ceramic materials -- 7.1. Reminder -- 7.1.1. X-ray/matter interactions -- 7.1.2. Scattering by a single atom -- 7.1.3. The Bragg law -- 7.1.4. Reciprocal space and diffraction -- 7.1.5. Diffracted intensity and correction terms -- 7.1.6. Bragg peak profiles; 7.2. Sample preparation and acquisition geometry -- 7.2.1. Sample preparation -- 7.2.2. Acquisition geometry -- 7.3. Quantitative analysis -- 7.3.1. Samples with low absorption contrast -- 7.3.2. Samples with intermediate absorption contrast -- 7.3.3. Quantification for an "amorphous" phase‑containing compound -- 7.3.4. Example of phase quantification in a nuclear glass -- 7.4. Beyond conventional XRD analysis -- 7.5. Conclusion -- Chapter 8. Glass and crystallisation: mechanical properties -- 8.1. Effective elastic properties of glass-ceramics -- 8.2. Hardness of glass-ceramics -- 8.3. Strength and toughness of glass-ceramics -- 8.3.1. Theoretical and experimental considerations -- 8.3.2. Role of the microstructure -- 8.4. Residual stresses and cracking -- 8.4.1. Modelling residual stresses -- 8.4.2. Residual stresses and microcracking -- 8.4.3. Residual stress measurements -- 8.5. Anisotropy -- 8.6. Conclusion -- Chapter 9. Electron microscopy applied to the study of nucleation and crystallisation in glasses -- 9.1. Scanning Electron Microscopy -- 9.2. Transmission Electron Microscopy -- 9.2.1. Principle -- 9.2.2. TEM imaging techniques -- 9.2.3. STEM-HAADF -- 9.2.4. EELS -- 9.2.5. Chemical imaging: Energy Filtered TEM - EFTEM -- 9.2.6. Aberration correction in HRTEM and STEM -- 9.2.7. Sample preparation -- 9.3. Nucleation/growth -- 9.3.1. Observation and nature of initial crystals -- 9.3.2. Mechanisms of nucleation and role of nucleating agents -- 9.3.3. Secondary crystallisation -- 9.4. Heterogeneities and phase separation -- 9.5. Conclusion -- Chapter 10. X-ray and neutron small-angle scattering -- 10.1. Introduction -- 10.2. X-ray and neutron scattering: Specificities and complementarities -- 10.3. Distances and phenomena -- 10.3.1. Thermal density fluctuations -- 10.3.2. Chemical concentration fluctuations; 10.3.3. Supercritical fluctuations -- 10.4. Basic notions for small-angle scattering -- 10.5. Data analysis -- 10.6. Examples of applications -- 10.6.1. Detailed example of a liquid-liquid phase separation in a glass containing molybdenum -- 10.6.2. Other examples of study of phase separation -- 10.6.3. Nucleation study by SANS and SAXS -- 10.6.4. Example of nucleation and crystallisation in a glass by SANS -- 10.6.5. Example of nucleation and crystallisation in a cordierite glass by SAXS -- 10.7. Conclusion -- Chapter 11. Nuclear Magnetic Resonance: deciphering disorder and crystallisation phenomena in glassy materials -- 11.1. Introduction -- 11.2. Basic principles of NMR -- 11.2.1. NMR interactions: a fingerprint of the local environment -- 11.2.2. The solid-state NMR toolkit -- 11.3. Spectral signature of disorder in NMR and its resolution -- 11.3.1. NMR of disordered systems -- 11.3.2. Combining NMR with atomistic modelling -- 11.4. Application to crystallisation studies -- 11.5. Conclusion -- Chapter 12. Raman spectroscopy: a valuable tool to improve our understanding of nucleation and growth mechanism -- 12.1. Introduction -- 12.2. Principle of Raman spectrometry -- 12.3. Instrumentation and Analysis -- 12.3.1. HOLOLAB 5000 spectrometer -- 12.3.2. T64000 spectrometer and the confocal system -- 12.3.3. Sampling volume -- 12.3.4. Raman spectra intensity -- 12.3.5. Black body emission and limitation to performing in situ measurements at high temperature -- 12.3.6. Correction of the temperature effect and excitation wavelength -- 12.4. Various experimental studies -- 12.4.1. Nucleation and phase identification in the CaO-Al2O3-SiO2 system -- 12.4.2. Ex situ measurements of silicate apatite crystallisation in a borosilicate matrix -- 12.4.3. In situ study of silico apatite crystallisation in a borosilicate matrix; 12.4.4. Induced crystallisation by laser impact in GeO2 glass N2 - No detailed description available for "From glass to crystal" UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5057957 ER -