Stefan, Mihaela I.

Advanced Oxidation Processes for Water Treatment : Fundamentals and Applications. - 1st ed. - 1 online resource (711 pages)

Cover -- Copyright -- Dedication -- Contents -- About the Editor -- List of Contributors -- Preface -- Chapter 1: A few words about Water -- 1.1 References -- Chapter 2: UV/Hydrogen peroxide process -- 2.1 Introduction -- 2.2 Electromagnetic Radiation, Photochemistry Laws and Photochemical Parameters -- 2.2.1 Electromagnetic radiation -- 2.2.2 Photochemistry laws -- 2.2.3 Photochemical parameters -- 2.2.3.1 Molar absorption coefficients -- 2.2.3.2 Quantum yield -- 2.3 UV Radiation Sources -- 2.3.1 Blackbody radiation -- 2.3.2 Mercury vapor-based UV light sources for water treatment -- 2.3.2.1 Low-pressure (LP) Hg vapor arc lamps -- 2.3.2.2 Medium-pressure Hg vapor arc lamps -- 2.3.2.3 Quartz sleeves -- 2.3.3 Mercury-free UV lamps -- 2.3.3.1 Excilamps -- 2.3.3.2 Pulsed UV lamps -- 2.3.3.3 Light-emitting diode (LED) lamps -- 2.4 UV/H2O2 Process Fundamentals -- 2.4.1 Photolysis of hydrogen peroxide -- 2.4.2 Hydroxyl radical -- 2.4.2.1 Hydroxyl radical properties, detection and quantification in aqueous solutions -- 2.4.2.2 Reactions of hydroxyl radical -- 2.4.2.3 Reactions of C-centered radicals, oxyl- and peroxyl radicals -- 2.4.3 Rate constants of OH reactions with organic and inorganic compounds -- 2.4.3.1 Brief review on kOH literature data -- 2.4.3.2 Temperature-dependence of OH reactions -- 2.4.3.3 Experimental and theoretical methods for kOH determination -- 2.5 Kinetic Modeling of UV/H2O2 Process -- 2.5.1 Pseudo-steady-state approximation and dynamic kinetic models -- 2.5.1.1 Modeling the UV/H2O2 process with the ROH,UV parameter -- 2.5.1.2 Experimental determination of OH water matrix background demand -- 2.5.2 Computational fluid dynamics models for the UV/H2O2 process -- 2.6 Water Quality Impact on UV/H2O2 Process Performance -- 2.6.1 pH -- 2.6.2 Temperature -- 2.6.3 Water matrix composition -- 2.6.3.1 Inorganic compounds. 2.6.3.2 Dissolved organic Matter (DOM) -- 2.7 Performance Metrics for UV Light-Based AOPs -- 2.7.1 Electrical energy per order -- 2.7.2 UV Fluence (UV dose) -- 2.8 UV/H2O2 AOP Equipment Design and Implementation -- 2.8.1 UV Reactor design concepts -- 2.8.2 Sizing full-scale UV equipment from bench- and pilot-scale -- 2.8.3 Incorporating the UV light-based processes into water treatment trains -- 2.9 UV/H2O2 AOP for Micropollutant Treatment in Water -- 2.9.1 Laboratory-scale research studies -- 2.9.1.1 N-Nitrosamines -- 2.9.1.2 Pesticides -- 2.9.1.3 Cyanotoxins -- 2.9.1.4 Taste-and-odor (T& -- O) causing compounds -- 2.9.1.5 Volatile organic compounds (VOCs) -- 2.9.1.6 Endocrine disrupting compounds (EDCs) -- 2.9.1.7 Pharmaceuticals -- 2.9.1.8 Miscellaneous micropollutants -- 2.9.2 Pilot-scale tests -- 2.9.3 Full-scale UV/H2O2 AOP installations -- 2.9.4 Process economics, sustainability and life-cycle assessment -- 2.10 Byproduct Formation and Mitigation Strategies -- 2.11 Future Research Needs -- 2.12 Acknowledgments -- 2.13 References -- Chapter 3: Application of ozone in water and wastewater treatment -- 3.1 Introduction -- 3.2 Properties of Ozone -- 3.3 Decomposition of Ozone in Water -- 3.4 Ozonation for Contaminant Removal -- 3.4.1 Overview -- 3.4.2 Direct reactions with ozone -- 3.4.3 Impact of water quality on process performance -- 3.4.4 Summary -- 3.5 Formation of Byproducts -- 3.6 Microbiological Applications -- 3.6.1 Disinfection in drinking water and wastewater applications -- 3.6.2 Microbial surrogates and indicators -- 3.6.3 Ozone dosing frameworks for disinfection -- 3.6.4 Vegetative bacteria -- 3.6.5 Viruses -- 3.6.6 Spore-forming microbes -- 3.7 Implementation at Full Scale Facilities -- 3.7.1 Ozone systems -- 3.7.2 Ozone contactor -- 3.7.3 Mass transfer efficiency -- 3.7.4 Cost estimates -- 3.7.5 Process control. 3.8 Case Studies and Regulatory Drivers -- 3.8.1 Drinking water applications -- 3.8.2 Wastewater and potable reuse applications -- 3.9 References -- Chapter 4: Ozone/H2O2 and ozone/UV processes -- 4.1 Introduction -- 4.2 O3/H2O2 (Peroxone) Process Fundamentals -- 4.2.1 Mechanism of hydroxyl radical generation -- 4.2.2 O3 and OH exposures: the Rct concept -- 4.2.3 Reaction kinetics and modeling -- 4.2.4 Water quality impact on process performance: O3 and H2O2 dose selection criteria -- 4.3 O3/H2O2 AOP for Micropollutant Removal -- 4.3.1 Bench-scale research studies -- 4.3.2 Pilot-scale studies -- 4.3.3 Full-scale applications -- 4.3.4 Process economics and limitations -- 4.4 O3/UV Process -- 4.4.1 Process fundamentals -- 4.4.2 Research studies and applications -- 4.5 Byproduct Formation and Mitigation Strategies -- 4.5.1 O3/H2O2 process -- 4.5.2 O3/UV process -- 4.6 Disinfection -- 4.7 References -- Chapter 5: Vacuum UV radiation-driven processes -- 5.1 Fundamental Principles of Vacuum UV Processes -- 5.1.1 VUV radiation sources for water treatment -- 5.1.2 VUV irradiation of water -- 5.1.2.1 VUV photolysis of pure water -- 5.1.2.2 Heterogeneity of the VUV-irradiated aqueous solutions -- 5.2 Kinetics and Reaction Modeling -- 5.2.1 Reactions and role of primary and secondary formed reactive species -- 5.2.2 Kinetics and mechanistic modeling of VUV AOP -- 5.3 Vacuum UV Radiation for Water Remediation -- 5.3.1 VUV for removal of specific compounds -- 5.3.1.1 Aliphatic and chlorinated volatile organic compounds -- 5.3.1.2 Perfluorinated organic compounds -- 5.3.1.3 Aromatic compounds -- 5.3.1.4 Pesticides -- 5.3.1.5 Pharmaceuticals -- 5.3.1.6 Other water contaminants -- 5.3.2 VUV in combination with other treatment technologies -- 5.3.2.1 VUV and VUV/UV in combination with H2O2 -- 5.3.2.2 VUV and VUV/UV in combination with photocatalysis. 5.3.2.3 VUV and VUV/UV in combination with ozone -- 5.4 Water Quality Impact on Vacuum UV Process Performance and By-product Formation -- 5.4.1 The effect of inorganic ions -- 5.4.2 The effect of dissolved natural organic matter (NOM) -- 5.4.3 Effect of pH -- 5.4.4 By-product formation during the VUV process and their removal through biological activated carbon filtration -- 5.4.4.1 Chlorination disinfection by-products (DBPs) -- 5.4.4.2 Aldehydes, nitrite and H2O2 -- 5.4.4.3 Bromate -- 5.5 Water Disinfection -- 5.6 Reactor/Equipment Design and Economic Considerations -- 5.6.1 Actinometry for VUV photon flow measurements -- 5.6.2 Reactor design -- 5.6.3 Economics considerations -- 5.7 Applications of Vacuum UV Light Sources -- 5.7.1 Applications in instrumental chemical analysis -- 5.7.2 Ultrapure water production -- 5.8 Vacuum UV AOP - General Conclusions -- 5.9 Acknowledgements -- 5.10 References -- Chapter 6: Gamma-ray and electron beam-based AOPs -- 6.1 Introduction -- 6.2 Radiolysis as a Universal Tool to Investigate Radical Reactions and as a Process for Large Scale Industrial Technology -- 6.2.1 Techniques in radiation chemistry for establishing reaction mechanisms -- 6.2.2 Sources of ionizing radiation in water treatment -- 6.2.3 G-value, dosimetric quantities, penetration depth -- 6.3 Water Radiolysis -- 6.3.1 Process fundamentals, yields and reactions of reactive intermediates -- 6.3.1.1 Hydroxyl radical -- 6.3.1.2 Hydrated electron -- 6.3.1.3 Hydrogen atom -- 6.3.2 Reactions of primary species with common inorganic ions -- 6.3.2.1 Reactions of carbonate radical anion -- 6.3.2.2 Reactions of dichloride radical anion -- 6.3.2.3 Reactions of sulfate radical anion -- 6.3.2.4 Reactions in the presence of ozone -- 6.3.3 Kinetics and modeling of ionizing radiation-induced processes -- 6.3.4 Toxicity of ionizing radiation-treated water. 6.4 Research Studies on Water Radiolysis-Mediated Degradation of Organic Pollutants -- 6.4.1 Aromatic compounds -- 6.4.2 Endocrine disrupting compounds -- 6.4.2.1 Alkylphenols -- 6.4.2.2 Bisphenols -- 6.4.2.3 Phthalates -- 6.4.3 Pesticides -- 6.4.3.1 Chlorophenoxy pesticides -- 6.4.3.2 Triazine pesticides -- 6.4.3.3 Phenylurea herbicides -- 6.4.4 Pharmaceutical compounds -- 6.4.4.1 Antibiotics -- 6.4.4.1.1 Chloramphenicol -- 6.4.4.1.2 Sulfonamides -- 6.4.4.1.3 β-Lactam antibiotics -- 6.4.4.2 Non-steroidal anti-inflammatory drugs -- 6.4.4.2.1 Aspirin -- 6.4.4.2.2 Paracetamol -- 6.4.4.2.3 Diclofenac -- 6.4.4.2.4 Ketoprofen and ibuprofen -- 6.4.5 Organic dyes -- 6.4.5.1 Azo dyes -- 6.4.5.2 Anthraquinone dyes -- 6.4.6 Naphthalene sulfonic acid derivatives -- 6.5 Ionizing Radiation for Water Treatment: Pilot- and Industrial Scale Applications -- 6.5.1 General considerations -- 6.5.2 Ionizing radiation reactors for water treatment -- 6.5.3 Ionizing radiation for water treatment: pilot studies -- 6.5.3.1 The Miami (USA) electron beam research facility (EBRF) -- 6.5.3.2 Removal of organic and petrochemical pollutants in Brazil -- 6.5.3.3 Austrian drinking water treatment plant using e-beam combined with ozone -- 6.5.3.4 Irradiation of wastewater aerosols in Russia -- 6.5.3.5 Pilot plant installation in China to remove HCN dissolved in water -- 6.5.4 Industrial scale installations using radiation-based AOP -- 6.5.4.1 Voronezh (Russia) electron beam-biological filtration wastewater facility -- 6.5.4.2 Daegu (Republic of Korea) electron beam - biological filtration wastewater facility -- 6.5.5 Economics -- 6.6 Conclusions -- 6.7 Acknowledgement -- 6.8 References -- Chapter 7: Fenton, photo-Fenton and Fenton-like processes -- 7.1 Introduction -- 7.2 Types of Fenton Processes -- 7.2.1 Fenton processes -- 7.2.1.1 Homogeneous Fenton processes. 7.2.1.2 Heterogeneous Fenton processes.

9781780407197


Water-Aeration.
Water-Purification-Oxidation.
Sewage-Purification-Oxidation.


Electronic books.

TD458 .A383 2018

628.165