Szunerits, Sabine.

Nanocarbons for Electroanalysis. - 1st ed. - 1 online resource (299 pages) - Nanocarbon Chemistry and Interfaces Series . - Nanocarbon Chemistry and Interfaces Series .

Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Series Preface -- Preface -- Chapter 1 Electroanalysis with Carbon Film-based Electrodes -- 1.1 Introduction -- 1.2 Fabrication of carbon film electrodes -- 1.3 Electrochemical performance and application of carbon film electrodes -- 1.3.1 Pure and oxygen containing groups terminated carbon film electrodes -- 1.3.2 Nitrogen containing or nitrogen terminated carbon film electrodes -- 1.3.3 Fluorine terminated carbon film electrode -- 1.3.4 Metal nanoparticles containing carbon film electrode -- References -- Chapter 2 Carbon Nanofibers for Electroanalysis -- 2.1 Introduction -- 2.2 Techniques for the Preparation of CNFs -- 2.3 CNFs Composites -- 2.3.1 NCNFs -- 2.3.2 Metal nanoparticles‐loaded CNFs -- 2.4 Applications of CNFs for electroanalysis -- 2.4.1 Technologies for electroanalysis -- 2.4.2 Non‐enzymatic biosensors -- 2.4.3 Enzyme‐based biosensors -- 2.4.4 CNFs‐based immunosensors -- 2.5 Conclusions -- References -- Chapter 3 Carbon Nanomaterials for Neuroanalytical Chemistry -- 3.1 Introduction -- 3.2 Carbon Nanomaterial-based Microelectrodes and Nanoelectrodes for Neurotransmitter Detection -- 3.2.1 Carbon Nanomaterial-based Electrodes Using Dip Coating/Drop Casting Methods -- 3.2.2 Direct Growth of Carbon Nanomaterials on Electrode Substrates -- 3.2.3 Carbon Nanotube Fiber Microelectrodes -- 3.2.4 Carbon Nanoelectrodes and Carbon Nanomaterial-based Electrode Array -- 3.2.5 Conclusions -- 3.3. Challenges and Future Directions -- 3.3.1 Correlation Between Electrochemical Performance and Carbon Nanomaterial Surface Properties -- 3.3.2 Carbon Nanomaterial-based Anti-fouling Strategies for in vivo  Measurements of Neurotransmitters -- 3.3.3 Reusable Carbon Nanomaterial-based Electrodes -- 3.4 Conclusions -- References. Chapter 4 Carbon and Graphene Dots for Electrochemical Sensing -- 4.1 Introduction -- 4.2 CDs and GDs for Electrochemical Sensors -- 4.2.1 Substrate Materials in Electrochemical Sensing -- 4.2.1.1 Immobilization and Modification Function -- 4.2.1.2 Electrocatalysis Function -- 4.2.2 Carriers for Probe Fabrication -- 4.2.3 Signal Probes for Electrochemical Performance -- 4.2.4 Metal Ions Sensing -- 4.2.5 Small Molecule Sensing -- 4.2.6 Protein Sensing -- 4.2.7 DNA/RNA Sensing -- 4.3 Electrochemiluminescence Sensors -- 4.4 Photoelectrochemical Sensing -- 4.5 Conclusions -- References -- Chapter 5 Electroanalytical Applications of Graphene -- 5.1 Introduction -- 5.2 The Birth of Graphene -- 5.3 Types of Graphene -- 5.4 Electroanalytical Properties of Graphene -- 5.4.1 Free‐standing 3D Graphene Foam -- 5.4.2 Chemical Vapour Deposition and Pristine Graphene -- 5.4.3 Graphene Screen‐printed Electrodes -- 5.4.4 Solution‐based Graphene -- 5.5 Future Outlook for Graphene Electroanalysis -- References -- Chapter 6 Graphene/gold Nanoparticles for Electrochemical Sensing -- 6.1 Introduction -- 6.2 Interfacing Gold Nanoparticles with Graphene -- 6.2.1 Ex‐situ Au NPs Decoration of Graphene -- 6.2.2 In‐situ Au NPs Decoration of Graphene -- 6.2.3 Electrochemical Reduction -- 6.3 Electrochemical Sensors Based on Graphene/Au NPs Hybrids -- 6.3.1 Detection of Neurotransmitters: Dopamine, Serotonin -- 6.3.2 Ractopamine -- 6.3.3 Glucose -- 6.3.4 Detection of Steroids: Cholesterol, Estradiol -- 6.3.5 Detection of Antibacterial Agents -- 6.3.6 Detection of Explosives Such as 2, 4, 6‐trinitrotoluene (TNT) -- 6.3.7 Detection of NADH -- 6.3.8 Detection of Hydrogen Peroxide -- 6.3.9 Heavy Metal Ions -- 6.3.10 Amino Acid and DNA Sensing -- 6.3.11 Detection of Model Protein Biomarkers -- 6.4 Conclusion -- Acknowledgement -- References. Chapter 7 Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-structured Platforms -- 7.1 Introduction -- 7.1.1 Basics and History of Fullerene (C60) -- 7.1.2 Synthesis of Fullerene -- 7.1.3 Functionalization of Fullerene -- 7.2 Modification of Electrodes with Fullerenes -- 7.2.1 Fullerene (C60)-DNA Hybrid -- 7.2.1.1 Interaction of DNA with Fullerene -- 7.2.1.2 Fullerene for DNA Biosensing -- 7.2.1.3 Fullerene as an Immobilization Platform -- 7.2.2 Fullerene(C60)-Antibody Hybrid -- 7.2.3 Fullerene(C60)-Protein Hybrid -- 7.2.3.1 Enzymes -- 7.2.3.2 Redox Active Proteins -- 7.3 Conclusions and Future Prospects -- References -- Chapter 8 Micro- and Nano-structured Diamond in Electrochemistry: Fabrication and Application -- 8.1 Introduction -- 8.2 Fabrication Method of Diamond Nanostructures -- 8.2.1 Reactive Ion Etching -- 8.2.2 Templated Growth -- 8.2.3 Surface Anisotropic Etching by Metal Catalyst -- 8.2.4 High Temperature Surface Etching -- 8.2.5 Selective Material Removal -- 8.2.6 sp2-Carbon Assisted Growth of Diamond Nanostructures -- 8.2.7 High Pressure High Temperature (HPHT) Methods -- 8.3 Application of Diamond Nanostructures in Electrochemistry -- 8.3.1 Biosensors Based on Nanostructured Diamond -- 8.3.2 Energy Storage Based on Nanostructured Diamond -- 8.3.3 Catalyst Based on Nanostructured Diamond -- 8.3.4 Diamond Porous Membranes for Chemical/Electrochemical Separation Processes -- 8.4 Summary and Outlook -- Acronyms -- References -- Chapter 9 Electroanalysis with C3N4 and SiC Nanostructures -- 9.1 Introduction to g-C3N4 -- 9.2 Synthesis of g-C3N4 -- 9.3 Electrocatalytic Behavior of g-C3N4 -- 9.4 Electroanalysis with g-C3N4 Nanostructures -- 9.4.1 Electrochemiluminescent Sensors -- 9.4.2 Photo-electrochemical Detection Schemes -- 9.4.3 Voltammetric Determinations -- 9.5 Introduction to SiC. 9.6 Synthesis of SiC Nanostructures -- 9.7 Electrochemical Behavior of SiC -- 9.8 SiC Nanostructures in Electroanalysis -- 9.9 Conclusion -- Acknowledgements -- References -- Index -- Supplemental Images -- EULA.

9781119243953


Electrodes, Carbon.


Electronic books.

QD572.C37.N366 2017

543.40284