Sound Topology, Duality, Coherence and Wave-Mixing : An Introduction to the Emerging New Science of Sound.
- 1st ed.
- 1 online resource (374 pages)
- Springer Series in Solid-State Sciences Series ; v.188 .
- Springer Series in Solid-State Sciences Series .
Intro -- Preface -- Reference -- Contents -- Chapter 1: Introduction to Spring Systems -- 1.1 Introduction -- 1.2 One-Dimensional Monatomic Harmonic Crystal -- 1.3 Phase and Group Velocity -- 1.4 One-Dimensional Diatomic Harmonic Crystal -- 1.5 One-Dimensional Monatomic Crystal with Spatially Varying Stiffness -- 1.6 Green´s Function Approach -- 1.7 Monatomic Crystal with a Mass Defect -- 1.7.1 Monatomic Harmonic Crystal with a General Perturbation -- 1.7.2 Locally Resonant Structure -- 1.8 Interface Response Theory -- 1.8.1 Fundamental Equations of the Interface Response Theory -- 1.8.2 Green´s Function of the Cleaved 1-D Monatomic Crystal -- 1.8.3 Finite Monatomic Crystal -- 1.8.4 1-D Monatomic Crystal with One Side Branch -- 1.8.5 1-D Monatomic Crystal with Multiple Side Branches -- 1.9 Conclusion -- Appendix 1: Code Based on Green´s Function Approach -- References -- Chapter 2: Phase and Topology -- 2.1 Introduction -- 2.2 Overview -- 2.3 Harmonic Oscillator Model Systems -- 2.3.1 Geometric Phase and Dynamical Phase of the Damped Harmonic Oscillator -- 2.3.2 Geometric Phase of the Driven Harmonic Oscillator -- 2.3.3 Topological Interpretation of the Geometric Phase -- 2.4 Elastic Superlattice Model System -- 2.4.1 Geometric Phase of a One-Dimensional Elastic Superlattice: Zak Phase -- 2.4.2 Topological Interpretation of the Zak Phase -- 2.5 Green´s Function Approach -- 2.5.1 Green´s Functions and Berry Connection -- 2.5.2 The One-Dimensional Harmonic Crystal -- 2.5.3 The One-Dimensional Harmonic Crystal with Side Branches -- 2.6 Topological Modes at Interfaces Between Media with Different Zak Phases -- 2.7 Conclusion -- Appendix 1: Eigen Values and Eigen Vectors in One-Dimensional Elastic Superlattice -- Appendix 2: Discrete One-Dimensional Monatomic Crystal with Spatially Varying Stiffness. Appendix 3: Introduction to Green´s Function Formalism -- Green´s Function and the Dyson Equation -- Green´s Function and Density of States -- References -- Chapter 3: Topology and Duality of Sound and Elastic Waves -- 3.1 Introduction -- 3.2 Overview -- 3.3 Intrinsic Topological Phononic Structures -- 3.3.1 Two Coupled Mass-Spring Harmonic Crystals in the Long-Wavelength Limit -- 3.3.2 Single Harmonic Crystal Grounded to a Rigid Substrate in the Long-Wavelength Limit -- 3.3.3 Single Discrete Harmonic Crystal Grounded to a Rigid Substrate Beyond the Long-Wavelength Limit -- 3.3.3.1 Dirac-Like Equation for the Discrete Crystal and Spinor Solutions -- 3.3.3.2 Non-conventional Topology of Elastic Waves in the Discrete 1D Mass-Spring Single Crystal System -- 3.3.3.3 Analysis of Fermion-Like Behavior of Single Harmonic Crystal Grounded to a Substrate in the Long-Wavelength Limit -- 3.3.3.3.1 Lagrangian Formalism -- 3.3.3.3.2 Energy and Anticommutation -- 3.3.3.3.3 Number Operators -- 3.3.3.3.4 Measurement of the Spinor State and Information Encoding and Processing -- 3.3.3.4 Examples of Physical Realization of Elastic and Acoustic Systems Supporting Fermion-Like Waves -- 3.3.3.4.1 Micromechanics Model Supporting Rotational Modes -- 3.3.3.4.2 Acoustic Klein-Gordon Equation -- 3.4 Extrinsic Topological Phononic Structure -- 3.4.1 Time-Dependent Elastic Superlattice -- 3.4.2 Multiple time Scale Perturbation Theory of the Time-Dependent Superlattice -- 3.4.3 Topology of Elastic Wave Functions -- 3.4.3.1 Non-reciprocity of Bulk Elastic Wave Propagation -- 3.4.3.2 Demonstration of Topologically Backscattering-Immune Bulk States -- 3.5 Mixed Intrinsic and Extrinsic Topological Phononic Structure -- 3.5.1 One-Dimensional Mass-Spring Harmonic Crystal Grounded to a Substrate with Spatio-Temporal Modulation. 3.6 Separable and Non-separable States in Elastic Structures -- 3.6.1 Separability of Systems Composed of Harmonic Oscillators -- 3.6.2 Partitioning of a Harmonic Crystal into Normal Modes -- 3.6.3 Uncoupled 1-D Harmonic Crystals -- 3.6.4 Separability and Non-separability of the States of Coupled Harmonic Crystals -- Appendix 1: Berry Phase of the Spinor Amplitude for the Discrete Harmonic Crystal Grounded to a Rigid Substrate -- Appendix 2: Rotational Modes in a Two-Dimensional Phononic Crystal -- Appendix 3: Molecular Dynamics (MD) and Spectral Energy Density (SED) Methods -- Spectral Energy Density Code -- Appendix 4: Mutiple Time-Scale Perturbation Theory -- References -- Chapter 4: Coherence -- 4.1 Introduction -- 4.2 The Anharmonic One-Dimensional Monatomic Crystal -- 4.2.1 Multiple-Time Scale Perturbation Theory of the Monatomic Anharmonic Crystal -- 4.2.2 Self-Interaction -- 4.2.3 Three-Wave Interactions -- 4.2.4 Molecular Dynamics (MD) Simulation and Spectral Energy Density (SED) Approaches -- 4.3 Nonlinear Phonon Modes in Second-Order Anharmonic Coupled Monatomic Chains -- 4.3.1 Model Systems -- 4.3.2 Multiple Time Scale Perturbation Theory -- 4.3.3 Self-Interaction -- 4.3.3.1 Zeroth Order Solutions -- 4.3.3.2 First Order Solutions -- 4.3.3.3 Second Order Solutions -- 4.3.3.4 Energy Transfer in the Linear-Nonlinear Two-Chain Model -- 4.3.4 Three Wave Interactions -- 4.3.5 Numerical Results -- 4.4 Multi-Phonon Scattering Processes in One-Dimensional Anharmonic Biological Superlattices -- 4.4.1 Model of Nonlinear Hydrated Collagen -- 4.4.2 Model and Simulation Methods -- 4.5 Composite Media with Controllable Nonlinearity -- 4.6 Calcium Waves in Chains of Endothelial Cells with Nonlinear Reaction Dynamics: A Metaphor for Wave Propagation in Bi-stabl... -- 4.6.1 Background for Calcium Waves in Endothelial Cells. 4.6.2 Linear and Nonlinear Reaction Dynamics -- 4.6.3 Reaction-Diffusion Problem with Linear or Nonlinear Reaction Dynamics -- 4.6.4 Propagation and Propagation Failure in a One-Dimensional Chain of Cells -- 4.7 Nonlinear Interactions Between Elastic Waves and Multiple Spatio-Temporal Modulations of Stiffness in a One-Dimensional Wa... -- References -- Chapter 5: Wave Mixing -- 5.1 Introduction -- 5.2 Effect of Sound on Gap-Junction Based Intercellular Signaling: Topological Calcium Waves Under Acoustic Irradiation -- 5.2.1 Background -- 5.2.2 Nonlinear Reaction Diffusion Model of Gap Junction Based Intercellular Calcium Waves -- 5.2.3 Linear Reaction Diffusion Model of Calcium Waves -- 5.3 Topological Interpretation of Phonon Drag -- 5.4 Phonon-Magnon Resonant Processes with Relevance to Acoustic Spin Pumping -- 5.4.1 Magnon Background -- 5.4.2 Model -- 5.4.2.1 Hamiltonian -- 5.4.2.2 Equations of Motion for the Spin Degrees of Freedom -- 5.4.2.3 Equations of Motion for the Displacement -- 5.4.3 Multiple Time Scale Perturbation Method Applied to Case I -- 5.4.4 Solutions of the Equations of Motion in Case I -- 5.4.4.1 Zeroth-Order in K -- 5.4.4.2 First-Order in K -- 5.4.4.3 Second-Order in K -- 5.4.5 Discussion of Results for Case I -- 5.4.5.1 Dispersion with Phonon-Magnon Interactions -- 5.4.5.2 Effect of an External Magnetic Field -- 5.4.6 Analysis of Case II -- 5.4.7 Phonon-Magnon Interaction Summary -- Appendix 1: Fortran 90 Program Used to Model the Nonlinear Reaction-Diffusion Dynamics of a Chain of Cells Subjected to a Spat... -- Appendix 2: Multiple Time Scale Perturbation Theory Analysis of Calcium Wave in an Acoustic Field -- References -- Chapter 6: Acoustic Analogues -- 6.1 Introduction -- 6.2 Analogue of Quantum Bit (qubit): Phase Bit (φ-bit) -- 6.3 Gauge Fields Analogue for Phonons -- 6.4 Particle-Wave Duality with Acoustic Bubbles. 6.4.1 Dynamical Model of a Single Bubble in an Acoustic Standing Wave Field -- 6.4.2 Bubble in a Chain of Interacting Bubbles -- 6.4.3 Acousto-hydrodynamics of a Bubble -- 6.5 General Relativity Analogues -- 6.5.1 Acoustic Waves in a Moving Fluid -- 6.5.2 Lagrangian Approach -- 6.5.3 Second-Order Partial Differential Equation -- 6.5.4 Time-Dependent Superlattice -- 6.5.4.1 Temporal Geometrical Description -- 6.5.4.2 Space-Multiple Times (1+2) Geometrical Model -- Appendix 1: Laplacian and d´Alembertian in a General Coordinate System -- Appendix 2: Geometrical Representation of the Dynamics of One-Dimensional Harmonic Systems -- References -- Subject Index.