Kuila, Arindam.
Lignocellulosic Biomass Production and Industrial Applications.
- 1st ed.
- 1 online resource (305 pages)
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Valorization of Lignocellulosic Materials to Polyhydroxyalkanoates (PHAs) -- 1.1 Introduction -- 1.1.1 What is PHA? -- 1.1.2 Mechanism of PHA Production -- 1.2 Lignocellulose: An Abundant Carbon Source for PHA Production -- 1.2.1 Cellulose -- 1.2.2 Hemicelluloses -- 1.2.3 Lignin -- 1.2.4 Pectin -- 1.3 Lignocellulosic Pretreatment Techniques -- 1.3.1 Physical Pretreatment Techniques -- 1.3.1.1 Milling -- 1.3.1.2 Irradiation -- 1.3.2 Chemical Pretreatment -- 1.3.2.1 Acid Hydrolysis Pretreatment -- 1.3.2.2 Alkaline Hydrolysis -- 1.3.2.3 Oxidative Delignification by Peroxide -- 1.3.2.4 Organosolv Process -- 1.3.2.5 Ozonolysis Pretreatment -- 1.3.2.6 Ionic Liquids Pretreatment -- 1.3.3 Physico-Chemical Pretreatment -- 1.3.3.1 Liquid Hot-Water Pretreatment -- 1.3.3.2 Steam Explosion -- 1.3.3.3 Ammonia Fiber Explosion (AFEX) -- 1.3.4 Bological Pretreatment -- 1.4 Hydrolysis of Lingocellulose -- 1.5 Lignocellulose Biomass as Substrate for PHA Production -- 1.6 Conclusion -- References -- 2 Biological Gaseous Energy Recovery from Lignocellulosic Biomass -- 2.1 Introduction -- 2.2 Simple Sugars as Feedstock -- 2.3 Complex Substrates as Feedstock -- 2.4 Biomass Feedstock -- 2.4.1 Energy Crop -- 2.4.1.1 Miscanthus sp. -- 2.4.1.2 Sweet Sorghum Extract -- 2.4.1.3 Sugar Beet Juice -- 2.4.2 Algal Biomass -- 2.5 Waste as Feedstock -- 2.5.1 Municipal Solid Waste (MSW) -- 2.5.2 Food Waste -- 2.6 Industrial Wastewater -- 2.6.1 Dairy Industry Wastewater -- 2.6.2 Distillery Wastewater -- 2.6.3 Chemical Wastewaters -- 2.6.4 Glycerol -- 2.6.5 Palm Oil Mill Effluent -- 2.7 Conclusion -- Acknowledgments -- References -- 3 Alkali Treatment to Improve Physical, Mechanical and Chemical Properties of Lignocellulosic Natural Fibers for Use in Various Applications -- 3.1 Introduction. 3.1.1 Composition of Natural Fibers -- 3.1.2 Properties of Natural Fibers -- 3.2 Alkali Treatment -- 3.2.1 General Processing -- 3.2.2 Steam Treatment -- 3.2.3 Alkali-Steam Treatment -- 3.3 Application of the Alkali-Steam-Treated Fibers -- 3.3.1 Biocomposite -- 3.3.1.1 Green Biocomposite -- 3.3.1.2 Bionanocomposites -- 3.3.2 Water Treatment -- 3.3.2.1 Fluoride Removal -- 3.3.2.2 Dye Removal -- 3.3.2.3 Heavy Metal Removal -- 3.4 Summary -- References -- 4 Biodiesel Production from Lignocellulosic Biomass Using Oleaginous Microbes -- 4.1 Introduction -- 4.2 Lignocellulosics Distribution, Availability and Diversity -- 4.2.1 Forest Trees and Residues -- 4.2.2 Food Crops -- 4.2.3 Non-Food/Energy Crops -- 4.2.4 Tree-Based Oils -- 4.2.5 Industrial Process Residues -- 4.3 Prospective Oleaginous Microbes for Lipid Production -- 4.3.1 Oleaginous Algae -- 4.3.1.1 Green Algae -- 4.3.1.2 Blue-Green Algae -- 4.3.1.3 Golden Algae -- 4.3.1.4 Red and Brown Algae -- 4.3.1.5 Diatoms -- 4.3.2 Oleaginous Yeast and Mold -- 4.3.3 Metabolic Engineering Approaches for LCB Utilization -- 4.3.3.1 Metabolic Engineering of Xylose and Co-Utilization of Substrate -- 4.4 Technical Know-How for Biodiesel Production from LCBs -- 4.5 Fermentation -- 4.5.1 Solid-State Fermentation (SSF) -- 4.5.2 Submerged Fermentation (SF) -- 4.6 Transesterification for Biodiesel Production -- 4.6.1 Biodiesel -- 4.6.2 Transesterification -- 4.6.3 Acid/Base Transesterification -- 4.6.4 Enzymatic Transesterification -- 4.6.4.1 Lipases -- 4.6.5 In-Situ Transesterification -- 4.7 Characteristics of Fatty Acid Methyl Esters -- 4.8 Conclusion -- References -- 5 Biopulping of Lignocellulose -- 5.1 Introduction -- 5.2 Composition of Lignocellulosic Biomass -- 5.3 Pulping and its Various Processes -- 5.4 Biopulping - Process Overview -- 5.4.1 Role of Rot Fungi and its Effect in Wood Biomass. 5.4.2 Role of Enzymes in Biopulping -- 5.5 Advantages and Disadvantages of Biopulping -- 5.6 Future Prospects -- Acknowledgment -- References -- 6 Second Generation Bioethanol Production from Residual Biomass of the Rice Processing Industry -- 6.1 Introduction -- 6.2 Residual Biomass -- 6.3 Rice and Processing -- 6.4 Pretreatment Techniques -- 6.4.1 Physical Pretreatment -- 6.4.1.1 Mechanical -- 6.4.1.2 Microwave -- 6.4.1.3 Pyrolysis -- 6.4.2 Physicochemical Pretreatment -- 6.4.2.1 Steam Explosion -- 6.4.2.2 Wet Oxidation -- 6.4.2.3 Ultrasound -- 6.4.2.4 Supercritical CO2 Explosion -- 6.4.2.5 Ammonia Fiber Expansion -- 6.4.3 Chemical Pretreatment -- 6.4.3.1 Ozonolysis -- 6.4.3.2 Acid Treatment -- 6.4.3.3 Alkaline Treatment -- 6.4.3.4 Organosolv Process -- 6.4.3.5 Ionic Liquids -- 6.4.4 Biological Pretreatment -- 6.5 Hydrolysis -- 6.6 Fermentation -- 6.7 Bioethanol Production -- 6.8 Concluding Remarks -- Acknowledgments -- References -- 7 Microbial Enzymes and Lignocellulosic Fuel Production -- 7.1 Introduction -- 7.1.1 Enzymes for Lignocellulosic Biomass-Based Biofuel Production -- 7.2 Lignocellulosic Biomass as Sustainable Alternative for Fuel Production -- 7.2.1 Constituents of Lignocelluloses: Cellulose, Hemicellulose, Lignin and Other Biomolecules -- 7.3 Enzymes and Their Sources for Biofuel Generation -- 7.4 Microbial Enzymes towards Lignocellulosic Biomass Degradation -- 7.4.1 Ligninases -- 7.4.1.1 Lignin Peroxidase -- 7.4.1.2 Manganese Peroxidase -- 7.4.1.3 Hybrid Peroxidase -- 7.4.1.4 Phenol Oxidases -- 7.4.1.5 Other Lignin-Degrading Enzymes -- 7.4.2 Carbohydratases -- 7.4.2.1 Cellulase -- 7.4.2.2 Auxiliary Cellulose-Degrading Enzymes -- 7.4.2.3 Hemicellulase -- 7.4.2.4 Expansins and Swollenins -- 7.4.2.5 Carboxyl Esterases -- 7.4.2.6 Zymase -- 7.5 Applications in Biofuel Production -- 7.5.1 Bioethanol -- 7.5.2 Biomethane and Biomanure. 7.6 Conclusion -- References -- 8 Sugarcane: A Potential Agricultural Crop for Bioeconomy through Biorefinery -- 8.1 Introduction -- 8.2 Present Status of Sugarcane Production and its Availability -- 8.3 Morphology of Sugarcane -- 8.4 Factors Involved in Sugarcane Production -- 8.4.1 Climatic Conditions -- 8.4.1.1 Temperature -- 8.4.1.2 Rainfall and Relative Humidity -- 8.4.1.3 Sunlight -- 8.4.2 Soil Quality -- 8.4.3 Varieties of Sugarcane -- 8.4.4 Land Requirement -- 8.4.5 Propagation -- 8.4.6 Nutrient Management -- 8.4.7 Water Management -- 8.4.8 Weed Management -- 8.4.9 Biotic Factors: Pests and Pathogens -- 8.4.10 Crop Rotation -- 8.4.11 Ratooning -- 8.4.12 Intercropping -- 8.5 Major Limitations of Sugarcane Production -- 8.6 An Overview of Biotechnological Developments for Sugarcane Improvement -- 8.7 By-Products of Sugarcane Processing -- 8.7.1 Bagasse -- 8.7.2 Molasses -- 8.7.3 Vinasse -- 8.8 Applications of Sugarcane for Biorefinery Concept -- 8.9 Utilization of Sugarcane Residue for Bioethanol Production -- 8.10 Conclusion -- References -- 9 Lignocellulosic Biomass Availability Map: A GIS-Based Approach for Assessing Production Statistics of Lignocellulosics and its Application in Biorefinery -- 9.1 Introduction -- 9.2 Geographical Information System (GIS) -- 9.3 Application of GIS in Mapping Lignocellulosic Biomass -- 9.4 Biofuels from Lignocellulosics -- 9.5 Conclusion -- References -- 10 Lignocellulosic Biomass Utilization for the Production of Sustainable Chemicals and Polymers -- 10.1 Introduction -- 10.2 Lignocellulosic Biomass -- 10.3 Pretreatment Strategies -- 10.3.1 Physical Pretreatment -- 10.3.1.1 Physical Comminution and Extrusion -- 10.3.1.2 Pyrolysis, Irradiation and Pulsed Electric Field -- 10.3.2 Chemical Pretreatment -- 10.3.2.1 Acid and Alkali Pretreatment -- 10.3.4 Thermophysical Pretreatments. 10.3.5 Thermochemical Pretreatments -- 10.3.5.1 Oxidation -- 10.3.6 Biological Pretreatment -- 10.4 Value-Added Chemicals from Lignocellulosic Biomass -- 10.4.1 Lignocellulose-Derived Sugars -- 10.4.2 Lignin-Derived Chemicals -- 10.4.2.1 Vanillin -- 10.4.2.2 Vanillin-Based Resins -- 10.4.2.3 Cyanate Ester Resins -- 10.4.2.4 Epoxide Resins -- 10.4.2.5 Benaoxazine Resins -- 10.4.2.6 Polyester -- 10.4.2.7 Polyurethanes -- 10.5 Sustainable Polymers from Lignocellulosic Biomass -- 10.5.1 Sugar-Containing Polymers -- 10.5.1.1 1,4-Diacid-Based Polymers -- 10.5.1.2 5-(Hydroxymethyl) Furfural (HMF)- and 2,5-Furandicarboxylic Acid (FDCA)-Based Polymers -- 10.5.1.3 3-HPA (3-Hydroxy Propionic Acid) Platform-Based Polymers -- 10.5.1.4 Aspartic Acid Platform-Based Polymers -- 10.5.1.5 Glutamic Acid Platform-Based Polymers -- 10.5.1.6 Glucaric Acid-Based Polymers -- 10.5.1.7 Itaconic Acid (ITA) Platform-Based Polymers -- 10.5.1.8 Levulinic Acid Platform-Based Polymer -- 10.5.1.9 3-Hydroxy-Butyrolactone (3-HBL) Platform-Based Polymer -- 10.5.1.10 Sorbitol-Based Polymers -- 10.5.1.11 Glycerol-Based Polymers -- 10.5.1.12 Lactic Acid-Based Platform -- 10.5.1.13 Acetone-Butanol-Ethanol-Based Polymer -- 10.5.1.14 Xylose/Furfural/Arabinitol Platform-Based Polymer -- 10.5.1.15 Polyhydroxyalkanoate (PHA) -- 10.5.1.16 Rubber Polymers -- 10.5.1.17 Other Lignocelluolse-Derived Polymers -- 10.6 Potential Challenges for a Sustainable Biorefinery -- 10.7 Environmental Effects of Biorefineries -- 10.8 Future Perspectives of Biorefineries and Their Products -- 10.9 Conclusion -- References -- 11 Utilization of Lignocellulosic Biomass for Biobutanol Production -- 11.1 Introduction -- 11.2 Bioconversion of Lignocellulosic Biomass to Biobutanol -- 11.3 Composition of Lignocellulosic Biomass -- 11.4 Structure of Lignocellulosic Biomass. 11.5 Biobutanol Production from Lignocellulosic Biomass.
9781119323877
Lignocellulose.
Electronic books.
TP248.65.L54L5383
662.88