TY - BOOK AU - Janson,Svante AU - Kaijser,Sten TI - Higher Moments of Banach Space Valued Random Variables T2 - Memoirs of the American Mathematical Society SN - 9781470426170 AV - QA273.J367 2015 U1 - 515/.732 PY - 2015/// CY - Providence PB - American Mathematical Society KW - Random variables KW - Electronic books N1 - Cover -- Title page -- Chapter 1. Introduction -- Chapter 2. Preliminaries -- 2.1. Notations -- 2.2. Measurability -- 2.3. Tensor products of Banach spaces -- 2.4. Vector-valued integration -- Chapter 3. Moments of Banach space valued random variables -- 3.1. Moments -- 3.2. Examples -- Chapter 4. The approximation property -- Chapter 5. Hilbert spaces -- Chapter 6. ^{ }( ) -- Chapter 7. ( ) -- Chapter 8. ₀( ) -- Chapter 9. [0,1] -- 9.1. [0,1] as a Banach space -- 9.2. [0,1] as a Banach algebra -- 9.3. Measurability and random variables in \doi -- 9.4. Moments of [0,1]-valued random variables -- Chapter 10. Uniqueness and Convergence -- 10.1. Uniqueness -- 10.2. Convergence -- Appendix A. The Reproducing Hilbert Space -- Appendix B. The Zolotarev Distances -- B.1. Fréchet differentiablity -- B.2. Zolotarev distances -- Bibliography -- Back Cover N2 - The authors define the k:th moment of a Banach space valued random variable as the expectation of its k:th tensor power; thus the moment (if it exists) is an element of a tensor power of the original Banach space. The authors study both the projective and injective tensor products, and their relation. Moreover, in order to be general and flexible, we study three different types of expectations: Bochner integrals, Pettis integrals and Dunford integrals UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4832037 ER -