Wireless Power Transfer and Data Communication for Neural Implants : Case Study: Epilepsy Monitoring.
- 1st ed.
- 1 online resource (119 pages)
- Analog Circuits and Signal Processing Series .
- Analog Circuits and Signal Processing Series .
Intro -- Preface -- Contents -- Acronyms -- 1 Introduction -- 1.1 Problem Definition -- 1.2 Motivation and Research Objectives -- 1.2.1 Next Generation Neural Recording Systems -- 1.2.2 Research Objectives -- 1.3 Neural Data Acquisition -- 1.4 Anticipated Challenges -- 1.5 Book Outline -- References -- 2 System Overview -- 2.1 System Specifications -- 2.2 System-Level Solutions -- 2.2.1 Single-Frequency Approach -- 2.2.2 Two-Frequency Approach -- 2.3 Summary -- References -- 3 Wireless Power Transfer -- 3.1 Implant Powering Solutions -- 3.1.1 Ambient Energy Harvesting -- 3.1.2 Battery Usage -- 3.1.3 Wireless Power Transfer -- 3.2 Wireless Power Transfer -- 3.3 Magnetic Coupling -- 3.4 Implantable Remote Powering Electronics -- 3.4.1 Rectifier -- 3.4.2 Voltage Regulator -- 3.5 Summary -- References -- 4 Wireless Data Communication -- 4.1 Bidirectional Wireless Communication -- 4.2 Uplink Communication on the Power Transfer Link -- 4.2.1 Modulator -- 4.2.2 ASK Demodulator -- 4.3 Uplink Communication with a Dedicated Transmitter and Receiver -- 4.3.1 Oscillator -- 4.3.2 Loop Antenna -- 4.3.3 External Base Station Receiver -- 4.4 Downlink Communication -- 4.5 Clock Recovery -- 4.6 Summary -- References -- 5 Packaging of the Implant -- 5.1 Background -- 5.2 Diffusion Modeling of a Polymeric Package -- 5.3 Temperature Elevation Considerations -- 5.4 Summary -- References -- 6 System-Level Experiments and Results -- 6.1 System Integration and Characterization -- 6.1.1 Single-Frequency Approach -- 6.1.2 Two-Frequency Approach -- 6.2 In vitro Experiments -- 6.2.1 Long-Term In vitro Experiments -- 6.3 In vivo Experiments -- 6.3.1 Surgical Procedure for the Implantation of the Electrode Array into a Rat Brain -- 6.4 Summary -- References -- 7 Conclusion -- Index.