Towards 5G : Applications, Requirements and Candidate Technologies.
- 1st ed.
- 1 online resource (469 pages)
Intro -- Title Page -- Copyright Page -- Contents -- List of Contributors -- List of Acronyms -- About the Companion Website -- Part I Overview of 5G -- Chapter 1 Introduction -- 1.1 Evolution of Cellular Systems through the Generations -- 1.2 Moving Towards 5G -- 1.3 5G Networks and Devices -- 1.4 Outline of the Book -- References -- Chapter 2 5G Requirements -- 2.1 Introduction -- 2.2 Emerging Trends in Mobile Applications and Services -- 2.2.1 New Types of Mobile Device -- 2.2.2 Video Streaming and Download Services -- 2.2.3 Machine-to-machine Services -- 2.2.4 Cloud Services -- 2.2.5 Context-based and Location-based Services -- 2.2.6 Broadcast Services -- 2.2.7 Summary -- 2.3 General Requirements -- 2.3.1 Capacity Requirements -- 2.3.2 User Data-rate Requirements -- 2.3.3 Latency Requirements -- 2.3.3.1 User-plane Latency -- 2.3.3.2 Control-plane Latency -- 2.3.4 Massive Device Connectivity -- 2.3.5 Energy Saving and Robustness against Emergencies -- 2.3.6 Summary -- References -- Chapter 3 Collaborative 5G Research within the EU Framework of funded research -- 3.1 Rationale for 5G Research and the EU's Motivation -- 3.2 EU Research -- 3.2.1 History -- 3.2.2 EU Bodies, Structure, Roles, and Project Creation -- 3.2.3 Project Creation and Operation -- 3.2.3.1 Project Creation -- 3.2.3.2 Project Operation -- 3.2.4 Details of the FP8 Program -- 3.2.5 European Technology Platforms and Public-Private Partnerships -- 3.2.6 Other Funded Research -- References -- Chapter 4 5G: Transforming the User Wireless Experience -- 4.1 Introduction -- 4.2 Intel's Vision of 5G Technologies -- 4.2.1 Enabling New Spectrum -- 4.2.2 Increasing Spectrum Efficiency -- 4.2.3 Exploiting Multiple Radio Access Technologies -- 4.2.4 Awareness of Application-specific Service Quality -- 4.2.5 Exploiting Context Awareness -- 4.2.6 Improving Device Power Efficiency. 4.3 Intel Strategic Research Alliance on 5G -- 4.4 ISRA 5G Technical Objectives and Goals -- 4.4.1 Goal 1: Network Capacity -- 4.4.2 Goal 2: Uniform Connectivity Experience -- 4.4.3 Goal 3: Service Quality and User Experience -- 4.5 ISRA 5G Project Summaries -- 4.5.1 Higher, Denser, Wilder: Massively Broadband and Adaptive Wireless for 5th Generation Wireless Communications -- 4.5.2 Fundamental Limits, Self-organization, and Context Awareness for Integrated Cellular and D2D Architectures -- 4.5.3 LAWS: Large Arrays and Wide Spectrum -- 4.5.4 A System View of Interference Management: Radio Circuits, PHY Mechanisms, and Protocol Designs -- 4.5.5 Dynamic Cloud Services Spectrum Sharing Algorithms and Mechanisms for B4G Networks -- 4.5.6 Fundamentals of Spectrum Sharing in Device-to-Device and Heterogeneous Communication Networks -- 4.5.7 Structured Sharing of Network and Compute Resources in a Community of Devices -- 4.5.8 A Unified Framework for Enabling Energy-efficient Mobile Internet Apps and Energy-efficient Cloud Offloading -- References -- Part II Candidate Technologies - Evolutionary -- Chapter 5 Towards Green and Soft -- 5.1 Chapter Overview -- 5.2 Efforts on Green and Soft 5G Networks -- 5.3 Rethink Shannon: EE and SE Co-design for a Green Network -- 5.3.1 EE and SE Co-design Fundamentals -- 5.3.2 5G Candidate Technologies with EE-SE Co-design -- 5.3.2.1 Hybrid BF for LSAS -- 5.3.2.2 NOMA with EE-SE Co-design -- 5.4 "No More Cell" for a Green and Soft Network -- 5.4.1 C-RAN: An Enabling Element for 5G -- 5.4.2 Rethink Signaling and Control for "No More Cell" -- 5.4.3 Service Aggregator: to Accommodate Trillions of Nodes in 5G -- 5.4.3.1 Aggregation of Packet Data from Multiple MTC Devices -- 5.4.3.2 Two Relay Modes of the Aggregators -- 5.5 Summary -- Acknowledgments -- References -- Chapter 6 Proactive Caching in 5G Small Cell Networks. 6.1 Small Cell Networks: Past, Present, and Future Trends -- 6.2 Cache-enabled Proactive Small Cell Networks -- 6.3 System Model -- 6.4 Proactive Caching at Base Stations -- 6.4.1 Numerical Results and Discussions -- 6.5 Proactive Caching at User Terminals -- 6.5.1 Numerical Results and Discussions -- 6.6 Related Work and Research Directions -- 6.6.1 Proactive Caching and Content Popularity Estimation -- 6.6.2 Approximation Algorithms -- 6.6.3 Coded Caching Gains -- 6.6.4 Joint Designs -- 6.6.5 Mobility -- 6.6.6 Energy Consumption -- 6.6.7 Deployment Aspects -- 6.7 Conclusions -- Acknowledgments -- References -- Chapter 7 Modeling Multi-Radio Coordination and Integration in Converged Heterogeneous Networks -- 7.1 Enabling Technologies for Multi-Radio Heterogeneous Networks -- 7.1.1 Understanding Challenges in Mobile Wireless Networking -- 7.1.2 5G Technology Trends: Heterogeneous Networks -- 7.1.3 5G Technology Trends: Direct Communications -- 7.1.4 Focus and Contributions of our 5G Research -- 7.2 Comprehensive Methodology for Space-Time Network Analysis -- 7.2.1 Capabilities of the Proposed Mathematical Approach -- 7.2.2 Proposed Taxonomy for HetNets -- 7.2.3 General Assumptions of the Model -- 7.2.4 The HetNet Operation Considered -- 7.3 Analysis of Random Dynamic HetNets -- 7.3.1 Core Stochastic Model -- 7.3.1.1 Tier Types I and II Analysis -- 7.3.1.2 Tier Type III Analysis -- 7.3.2 Calculating the Steady-State Distribution -- 7.3.3 Characterizing Transitions for Important HetNet Examples -- 7.3.3.1 Tier Type I Transitions -- 7.3.3.2 Tier Type II Transitions -- 7.3.3.3 Tier Type III Transitions -- 7.4 Quantifying Performance with System-level Evaluations -- 7.4.1 Features of our 5G System-level Simulator -- 7.4.2 Discussing Representative Numerical Results -- 7.5 Summary and Conclusions -- Acknowledgments -- References. Chapter 8 Distributed Resource Allocation in 5G Cellular Networks -- 8.1 Introduction -- 8.2 Multi-tier 5G Cellular: Overview and Challenges -- 8.2.1 Overview -- 8.2.2 Challenges in Radio Resource Management for Multi-tier Cellular Systems -- 8.3 System Model -- 8.3.1 Network Model and Assumptions -- 8.3.2 Achievable Data Rate -- 8.3.3 Formulation of the Resource Allocation Problem -- 8.4 Resource Allocation using Stable Matching -- 8.4.1 Concept of Matching -- 8.4.2 Utility Function and Preference Profile -- 8.4.3 Algorithm Development -- 8.4.4 Stability, Optimality, and Complexity of the Solution -- 8.4.4.1 Stability -- 8.4.4.2 Optimality -- 8.4.4.3 Complexity -- 8.5 Message-passing Approach for Resource Allocation -- 8.5.1 Overview of the MP Scheme -- 8.5.2 Reformulation of the Resource Allocation Problem Utilizing the MP Approach -- 8.5.3 Effective Implementation of MP Scheme in a Practical Heterogeneous Network -- 8.5.4 Algorithm Development -- 8.5.5 Convergence, Optimality, and Complexity of the Solution -- 8.5.5.1 Convergence and Optimality -- 8.5.5.2 Complexity -- 8.6 Auction-based Resource Allocation -- 8.6.1 Overview of the Auction Approach -- 8.6.2 Auction for Radio Resource Allocation -- 8.6.2.1 Cost Function -- 8.6.2.2 Update of Cost and Bidder Information -- 8.6.3 Algorithm Development -- 8.6.4 Convergence, Complexity, and Optimality of the Auction Approach -- 8.6.4.1 Convergence and Complexity -- 8.6.4.2 Optimality -- 8.7 Qualitative Comparison of the Resource Allocation Schemes -- 8.8 Summary and Conclusion -- References -- Additional Reading -- Chapter 9 Device-to-Device Communications -- 9.1 Introduction and Motivation -- 9.2 Propagation Channels -- 9.2.1 Pathloss -- 9.2.2 Delay Dispersion -- 9.2.3 Temporal Variations -- 9.3 Neighbor Discovery and Channel Estimation -- 9.3.1 Neighbor Discovery -- 9.3.2 Channel Estimation. 9.4 Mode Selection and Resource Allocation -- 9.4.1 Mode Selection -- 9.4.2 Resource Allocation -- 9.5 Scheduling -- 9.5.1 In-band D2D -- 9.5.2 Out-of-band D2D -- 9.5.3 FlashLinQ and ITLinQ -- 9.6 Multi-hop D2D -- 9.7 Standardization -- 9.8 Applications -- 9.8.1 Content Distribution in Social Networks -- 9.8.2 Video Distribution -- 9.8.3 Roadside Infostations -- 9.8.4 Emergency Communications -- 9.8.5 Distributed Storage Systems -- 9.8.6 Smart Grids -- 9.9 D2D for Video -- 9.9.1 Random Caching and Unicasting -- 9.9.2 Coded Caching and Multicasting -- 9.9.3 Simulation Results -- 9.10 Conclusions -- Acknowledgments -- References -- Chapter 10 Energy-efficient Wireless OFDMA Networks -- 10.1 Overview -- 10.2 Energy Efficiency and Energy-efficient Wireless Networks -- 10.3 Energy Efficiency and Spectral Efficiency Tradeoff in OFDMA -- 10.3.1 Fundamentals of the EE-SE Relationship -- 10.3.2 Impacts of System Parameters on the EE-SE Tradeoff -- 10.4 Energy Efficiency, Power, and Delay Tradeoff in OFDMA -- 10.4.1 Relationship between EE and Transmit Power -- 10.4.2 EE and Delay Tradeoff -- 10.5 Energy-efficient Resource Allocation for Downlink OFDMA -- 10.5.1 Optimal Energy-efficient Resource Allocation -- 10.5.2 Low-complexity Suboptimal Energy-efficient Resource Allocation -- 10.6 Energy-efficient Resource Allocation for Uplink OFDMA -- 10.6.1 Optimal Energy-efficient Resource Allocation -- 10.6.2 Low-complexity Suboptimal Energy-efficient Resource Allocation -- 10.7 Concluding Remarks -- References -- Chapter 11 Advanced Multiple-access and MIMO Techniques -- 11.1 Introduction -- 11.2 Non-orthogonal Multiple Access -- 11.2.1 Concept -- 11.2.1.1 Comparison with Orthogonal User Multiplexing -- 11.2.1.2 Motivations and Benefits of NOMA -- 11.2.2 Link-level Considerations -- 11.2.3.1 NOMA Signaling Overhead. 11.2.3.2 Performance in Low- and High-Mobility Scenarios.