TY - BOOK AU - Imran,Muhammad Ali AU - Sambo,Yusuf Abdulrahman AU - Abbasi,Qammer H. TI - Enabling 5G Communication Systems to Support Vertical Industries T2 - IEEE Press Series SN - 9781119515555 AV - TK5103.25 .E533 2019 U1 - 658.054678 PY - 2019/// CY - Newark PB - John Wiley & Sons, Incorporated KW - Business enterprises-Computer networks KW - Electronic books N1 - Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Chapter 1 Enabling the Verticals of 5G: Network Architecture, Design and Service Optimization -- 1.1 Introduction -- 1.2 Use Cases -- 1.3 5G Network Architecture -- 1.4 RAN Functional Decomposition -- 1.5 Designing a 5G Network -- 1.6 Network Latency -- 1.7 5G Network Architecture Design -- 1.8 Summary -- Acknowledgements -- References -- Chapter 2 Industrial Wireless Sensor Networks and 5G Connected Industries -- 2.1 Overview -- 2.2 Industrial Wireless Sensor Networks -- 2.2.1 Wired and Wireless Networks in Industrial Environment -- 2.2.2 Transformation of WSNs for Industrial Applications -- 2.2.3 IWSN Architecture -- 2.3 Industrial Traffic Types and Its Critical Nature -- 2.3.1 Safety/Emergency Traffic -- 2.3.2 Critical Control Traffic -- 2.3.3 Low‐Risk Control Traffic -- 2.3.4 Periodic Monitoring Traffic -- 2.3.5 Critical Nature and Time Deadlines -- 2.4 Existing Works and Standards -- 2.4.1 Wireless Technologies -- 2.4.2 Industry‐Related IEEE Standards -- 2.4.2.1 IEEE 802.15.4 -- 2.4.2.2 IEEE 802.15.4e -- 2.5 Ultra‐Reliable Low‐Latency Communications (URLLC) in IWSNS -- 2.6 Summary -- References -- Chapter 3 Haptic Networking Supporting Vertical Industries -- 3.1 Tactile Internet Use Cases and Requirements -- 3.1.1 Quality of Service -- 3.1.2 Use Cases and Requirements -- 3.2 Teleoperation Systems -- 3.2.1 Classification of Teleoperation Systems -- 3.2.2 Haptic Control and Data Reduction -- 3.2.2.1 Performance of Teleoperation Control Schemes -- 3.2.2.2 Haptic Data Reduction -- 3.2.2.3 Kinesthetic Data Reduction -- 3.2.2.4 Tactile Data Reduction -- 3.2.3 Combining Control Schemes and Data Reduction -- Acknowledgment -- References -- Chapter 4 5G‐Enhanced Smart Grid Services -- 4.1 Introduction; 4.2 Smart Grid Services and Communication Requirements -- 4.2.1 Smart Grid Fundamentals -- 4.2.1.1 Data Collection and Management Services -- 4.2.1.2 Control and Operation Services -- 4.2.2 Communication Requirements for Smart Grid Services -- 4.3 Smart Grid Services Supported by 5G Networks -- 4.3.1 Data Collection and Management Services -- 4.3.1.1 Data Collection Services -- 4.3.1.2 Data Management Services -- 4.3.2 Operation Decision‐Making Services -- 4.3.2.1 Demand Side Management Services -- 4.3.2.2 Electric Vehicle Charging and Discharging Services -- 4.4 Summary and Future Research -- Acknowledgment -- References -- Chapter 5 Evolution of Vehicular Communications within the Context of 5G Systems -- 5.1 Introduction -- 5.2 Vehicular Connectivity -- 5.2.1 Cellular V2X -- 5.2.1.1 Release 14 - First C‐V2X Services -- 5.2.1.2 Release 15 - First Taste of 5G -- 5.2.1.3 Release 16 - Fully‐Fledged 5G -- 5.2.2 Dedicated Short Range Communication (DSRC) -- 5.2.2.1 Co‐Existence -- 5.2.3 Advanced Technologies -- 5.2.3.1 Multi‐Access Edge Computing -- 5.2.3.2 Network Slicing -- 5.3 Data Dissemination -- 5.3.1 Context‐Aware Middleware -- 5.3.2 Heterogeneity and Interoperability -- 5.3.3 Higher Layer Communication Protocols -- 5.4 Towards Connected Autonomous Driving -- 5.4.1 Phase 1 - Awareness Driving Applications -- 5.4.2 Phase 2 - Collective Perception -- 5.4.3 Phase 3/4 - Trajectory/Manoeuvre Sharing -- 5.4.4 Phase 5 - Full Autonomy -- 5.5 Conclusions -- References -- Chapter 6 State‐of‐the‐Art of Sparse Code Multiple Access for Connected Autonomous Vehicle Application -- 6.1 Introduction -- 6.2 Sparse Code Multiple Access -- 6.3 State‐of‐the‐art -- 6.3.1 Codebook Design -- 6.3.2 Decoding/Detecting Techniques for SCMA -- 6.3.3 Other Research on Performance Evaluation of SCMA -- 6.4 Conclusion and Future Work -- References; Chapter 7 5G Communication Systems and Connected Healthcare -- 7.1 Introduction -- 7.2 Use Cases and Technical Requirements -- 7.2.1 Wireless Tele Surgery -- 7.2.2 Wireless Service Robots -- 7.3 5G Communication System -- 7.3.1 3GPP Technology Roadmap -- 7.3.2 5G Spectrum -- 7.3.3 5G Reference Architecture -- 7.3.4 5G Security Aspects -- 7.3.5 5G Enabling Technologies -- 7.3.5.1 5G Design for Low‐Latency Transmission -- 7.3.5.2 5G Design for Higher‐Reliability Transmission -- 7.3.6 5G Deployment Scenarios -- 7.4 Value Chain, Business Model and Business Case Calculation -- 7.4.1 Market Uptake for Robotic Platforms -- 7.4.2 Business Model and Value Chain -- 7.4.3 Business Case for Service Providers -- 7.4.3.1 Assumptions -- 7.4.3.2 Business Cases Calculation -- 7.5 Conclusions -- References -- Chapter 8 5G: Disruption in Media and Entertainment -- 8.1 Multi‐Channel Wireless Audio Systems for Live Production -- 8.2 Video -- 8.2.1 Video Compression Algorithms -- 8.2.1.1 HEVC: High Efficiency Video Coding -- 8.2.1.2 VP9 -- 8.2.1.3 AV1: AOMedia Video 1 -- 8.2.2 Streaming Protocols -- 8.2.2.1 Apple HTTP Live Streaming (HLS) -- 8.2.2.2 Dynamic Adaptive Streaming over HTTP (DASH) -- 8.2.3 Video Streaming Over Mobile Networks -- 8.3 Immersive Media -- 8.3.1 Virtual Reality (VR) -- 8.3.2 Augmented Reality (AR) -- 8.3.3 360‐Degree Video -- 8.3.4 Immersive Media Streaming -- References -- Chapter 9 Towards Realistic Modelling of Drone‐based Cellular Network Coverage -- 9.1 Overview of Existing Models for Drone‐Based Cellular Network Coverage -- 9.2 Key Objectives and Organization of this Chapter -- 9.3 Motivation -- 9.4 System Model -- 9.5 UAV Coverage Model Development -- 9.5.1 Coverage Probability -- 9.5.2 Received Signal Strength -- 9.6 Trade‐Offs Between Coverage Radius, Beamwidth and Height -- 9.6.1 Coverage Radius Versus Beamwidth; 9.6.2 Coverage Radius Versus Height -- 9.6.3 Height Versus Beamwidth -- 9.7 Impact of Altitude, Beamwidth and Radius on RSS -- 9.8 Analysis for Different Frequencies and Environments -- 9.9 Comparison of Altitude and Beamwidth to Control Coverage -- 9.10 Coverage Probability with Varying Tilt Angles and Asymmetric Beamwidths -- 9.11 Coverage Analysis with Multiple UAVs -- 9.12 Conclusion -- Acknowledgment -- References -- Chapter 10 Intelligent Positioning of UAVs for Future Cellular Networks -- 10.1 Introduction -- 10.2 Applications of UAVs in Cellular Networks -- 10.2.1 Coverage in Rural Areas -- 10.2.2 Communication for Internet of Things -- 10.2.3 Flying Fronthaul/Backhaul -- 10.2.4 Aerial Edge Caching -- 10.2.5 Pop‐Up Networks -- 10.2.6 Emergency Communication Networks -- 10.3 Strategies for Positioning UAVs in Cellular Network -- 10.4 Reinforcement Learning -- 10.4.1 Q‐Learning -- 10.5 Simulations -- 10.5.1 Urban Model -- 10.5.2 The UAVs -- 10.5.3 Path Loss -- 10.5.4 Simulation Scenario -- 10.5.5 Proposed RL Implementation -- 10.5.5.1 Simulation Results -- 10.6 Conclusion -- References -- Chapter 11 Integrating Public Safety Networks to 5G: Applications and Standards -- 11.1 Introduction -- 11.2 Public Safety Scenarios -- 11.2.1 In‐Coverage Scenario -- 11.2.2 Out‐of‐Coverage Scenario -- 11.2.3 Partial‐Coverage Scenario -- 11.3 Standardization Efforts -- 11.3.1 3rd Generation Partnership Project -- 11.3.1.1 Release 8 -- 11.3.1.2 Release 9 -- 11.3.1.3 Release 10 -- 11.3.1.4 Release 11 -- 11.3.1.5 Release 12 -- 11.3.1.6 Release 13 -- 11.3.1.7 Release 14 -- 11.3.1.8 Release 15 -- 11.3.2 Open Mobile Alliance -- 11.3.2.1 PTT over Cellular -- 11.3.2.2 Push to Communicate for Public Safety (PCPS) -- 11.3.3 Alliance for Telecommunication Industry Solutions -- 11.3.3.1 Energy and Utility Sector -- 11.3.3.2 Building Alarm Systems; 11.3.3.3 PS Communications with Emergency Centers -- 11.3.3.4 Smart City Solutions -- 11.3.4 APCO Global Alliance -- 11.3.5 Groupe Speciale Mobile Association (GSMA) -- 11.4 Future Challenges and Enabling Technologies -- 11.4.1 Future Challenges -- 11.4.1.1 Connectivity -- 11.4.1.2 Interoperability -- 11.4.1.3 Resource Scarceness -- 11.4.1.4 Security -- 11.4.1.5 Big Data -- 11.4.2 Enabling Technologies -- 11.4.2.1 Software‐Defined Networking -- 11.4.2.2 Cognitive Radio Networks -- 11.4.2.3 Non‐Orthogonal Multiple Access -- 11.5 Conclusion -- References -- Chapter 12 Future Perspectives -- 12.1 Enabling Rural Connectivity -- 12.2 Key Technologies for the Design of beyond 5G Networks -- 12.2.1 Blockchain -- 12.2.2 Terahertz Communication -- 12.2.3 LiFi -- 12.2.4 Wireless Power Transfer and Energy Harvesting -- Index -- EULA UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=5793786 ER -