Mass Spectrometry : An Applied Approach.
- 2nd ed.
- 1 online resource (443 pages)
- Wiley Series on Mass Spectrometry Series .
- Wiley Series on Mass Spectrometry Series .
Intro -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Introduction -- Chapter 2 A Brief History of Mass Spectrometry -- Chapter 3 Basic Definitions -- Chapter 4 Instrumentation -- 4.1 Ionization Methods -- 4.1.1 Electron Ioniza tion (EI) -- 4.1.2 Chemical Ionizatio n (CI) -- 4.1.2.1 Principle of Operation: Positive and Negative Ion Modes -- 4.1.3 Atmospheric Pressure Ionization (API) -- 4.1.3.1 Atmospheric Pressure Chemical Ionization (APCI) -- 4.1.3.2 Electrospray Ionization (ESI) -- 4.1.3.3 Nanoelectrospray -- 4.1.3.4 Desorption Electrospray Ionization (DESI) -- 4.1.3.5 Laser Ablation Electrospray Ionization (LAESI) -- 4.1.3.6 Photoionization -- 4.1.4 Ambient Plasma-Based Ionization Techniques -- 4.1.4.1 Introduction -- 4.1.4.2 Direct Analysis in Real Time (DART) -- 4.1.4.3 Flowing Atmospheric Pressure Afterglow (FAPA) -- 4.1.4.4 Dielectric Barrier Discharge Ionization (DBDI) -- 4.1.5 Matrix-Assisted Laser Desorption/Ionization (MALDI) -- 4.1.5.1 Introduction -- 4.1.5.2 The Role of Matrix -- 4.1.5.3 Atmospheric Pressure MALDI -- 4.1.5.4 MALDI Mass Spectra Interpretation -- 4.1.5.5 Desorption/Ionization on Porous Silicon (DIOS) -- 4.1.5.6 Surface-Enhanced Laser Desorption/Ionization (SELDI) -- 4.1.5.7 Nanostructure-Enhanced Laser Desorption/Ionization (NALDI) -- 4.1.5.8 Summary -- 4.1.6 Inductively Coupled Plasma Ionization (ICP) -- 4.1.6.1 Introduction -- 4.1.6.2 ICP as a Technique of Elemental Analysis and ICP Principle -- 4.1.6.3 Ionization of Elements and Ionization Efficiency -- 4.1.6.4 Mechanism of ICP Formation -- 4.1.6.5 Ways of Plasma View and Plasma Generation -- 4.1.6.6 Sample Introduction -- 4.1.6.7 Measurement in the ICP-MS Technique -- 4.1.6.8 Analyzers in ICP-MS Spectrometers -- 4.1.7 Secondary Ion Mass Spectrometry with Time-of-FlightAnalyzer (TOF-SIMS) -- 4.1.7.1 Introduction. 4.1.7.2 TOF-SIMS Principle of Operation -- 4.1.7.3 The Sputtering of the Sample Surface -- 4.1.7.4 Ionization (Generating Secondary Ions) -- 4.1.7.5 Construction of TOF-SIMS -- 4.1.7.6 Analytical Capabilities of TOF-SIMS -- 4.1.7.7 Examples and Spectra Interpretation -- 4.2 Analyzers -- 4.2.1 Time of Flight (TOF) -- 4.2.1.1 Introduction -- 4.2.1.2 The Working Rule of TOF Analyzer -- 4.2.1.3 Linear Mode of Operation of TOF -- 4.2.1.4 The Spread of the Kinetic Energy Regarding the Ions of the Same Mass -- 4.2.1.5 Delayed Ion Extraction -- 4.2.1.6 The Reflection Mode -- 4.2.1.7 Orthogonal Acceleration TOF Analyzer -- 4.2.1.8 Summary -- 4.2.2 Ion Mobility Analyzer (IM) -- 4.2.2.1 Principle of IM Operation -- 4.2.2.2 Drift Time IMS -- 4.2.2.3 High Field Asymmetric Waveform Ion Mobility Spectrometer (FAIMS) -- 4.2.2.4 Traveling Wave Ion Guides (TWIG) -- 4.2.2.5 IM Spectrum -- 4.2.2.6 Applications -- 4.2.3 Quadrupole Mass Analyzer -- 4.2.3.1 Construction and Principles of Operation of a Quadrupole -- 4.2.3.2 Behavior of an Ion Inside the Quadrupole -- 4.2.3.3 How Mass Spectrum Is Generated? Changes of U and V -- 4.2.3.4 Spectrum Quality -- 4.2.3.5 Applications of the Quadrupole Analyzer -- 4.2.3.6 Quadrupoles, Hexapoles, and Octapoles as Focusing Elements: Ion Guides -- 4.2.4 Ion Trap (IT) -- 4.2.4.1 Introduction -- 4.2.4.2 Behavior of an Ion Inside the Ion Trap -- 4.2.4.3 Analysis of the Ions -- 4.2.4.4 Mass Selective Instability Mode -- 4.2.4.5 Resonant Ejection Mode -- 4.2.4.6 Axial Modulation -- 4.2.4.7 Nonlinear Resonance -- 4.2.4.8 Linear Ion Trap (LIT) -- 4.2.4.9 Applications -- 4.2.5 High-Resolution Mass Spectrometry -- 4.2.5.1 Introduction -- 4.2.6 Ion Cyclotron Resonance (ICR) -- 4.2.6.1 Introduction -- 4.2.6.2 Cyclotron Frequency -- 4.2.6.3 ICR: Principles of Operation -- 4.2.6.4 Injection of Ions into the ICR Cell -- 4.2.6.5 Trapping Electrodes. 4.2.6.6 Excitation Electrodes -- 4.2.6.7 Detection Electrodes and Fourier Transform -- 4.2.6.8 FT-ICR Properties as m/z Analyzer -- 4.2.7 Orbitrap -- 4.2.7.1 History of Development and Principles of Operation -- 4.2.7.2 Analyzing Ions in the Orbitrap -- 4.2.7.3 Orbitrap Properties as m/z Analyzer -- 4.2.7.4 Analytical and Proteomic Applications of Orbitrap -- 4.2.8 Hybrid Mass Spectrometers -- 4.2.8.1 A Brief Comparison of Mass Analyzers -- 4.2.8.2 Triple Quadrupoles -- 4.2.8.3 Q-IT -- 4.2.8.4 Q-Orbitrap -- 4.2.8.5 Q-TOF -- 4.2.8.6 IT-TOF -- 4.2.8.7 IT-Orbitrap -- 4.2.9 Sector Instruments -- 4.2.9.1 Introduction -- 4.2.9.2 Rule of Operation of Magnetic Analyzer (B) -- 4.2.9.3 Electrostatic Sector (E) -- 4.2.9.4 Mass Spectrometers with Magnetic and Electrostatic Sector -- 4.3 Ion Detectors -- 4.3.1 Introduction -- 4.3.2 Electron Multiplier -- 4.3.3 Microchannel Detector -- 4.3.4 Medipix/Timepix Detector -- 4.3.5 Ion Detection in ICR and Orbitrap-Based Mass Spectrometers -- Chapter 5 Hyphenated Techniques -- 5.1 Gas Chromatography Combined with Mass Spectrometry (GC-MS) -- 5.1.1 Introduction -- 5.1.2 Detectors -- 5.1.3 Chemical Modifications: Derivatization -- 5.1.4 GC-MS Analysis -- 5.1.5 Two-Dimensional Gas Chromatography Linked to Mass Spectrometry 2D GC-MS -- 5.2 Liquid Chromatography Linked to Mass Spectrometry (LC-MS) -- 5.2.1 Introduction -- 5.2.2 Introduction to Liquid Chroma tography -- 5.2.3 Types of Detecto rs -- 5.2.4 Chromatographic Col umns -- 5.2.5 Chromatographic Separation an d Quantitation Using MS as a Detector -- 5.2.6 Construction of an Interface Linking Liquid Chromatograph to the Mass Spe ctrometer -- 5.2.6.1 Introduction -- 5.2.6.2 ESI Interface -- 5.2.6.3 APCI Connection to MS -- 5.2.6.4 APPI Interface -- 5.2.6.5 LC Connection to MALDI‐MS -- 5.2.6.6 Multidimensional Separations. 5.3 Capillary Electrophoresis Linked to Mass Spectrometry -- 5.3.1 Introduction -- 5.3.2 Types of Electrophoretic Techniques -- 5.3.3 Capillary Electrophoresis Linked to ESI -- 5.3.3.1 Introduction -- 5.3.3.2 Liquid Sheath Connection -- 5.3.3.3 Sheath-Free Connection -- 5.3.3.4 Liquid Junction -- 5.3.4 Capillary Electrophoresis Linked to Matrix-Assisted Laser Desorption/Ionization -- 5.3.4.1 Offline CE-MALDI-TOF -- 5.3.4.2 Direct CE-MALDI-TOF -- 5.3.4.3 Online CE-MALDI-TOF -- 5.3.5 Summary -- Chapter 6 Mass Spectrometry Imaging -- 6.1 Introduction -- 6.2 SIMS -- 6.3 MALDI-IMS -- 6.4 DESI -- 6.5 Analysis of Tissue Sections Using MSI Techniques -- 6.6 Analysis of Individual Cells and Cell Cultures Using MSI Techniques -- 6.7 Analysis with MSI Techniques: Examples -- 6.8 Combinations of Different Imaging Techniques -- 6.9 Summary -- Chapter 7 Tandem Mass Spectrometry -- 7.1 Introduction -- 7.2 Principles -- 7.3 Strategies for MS/MS Experiments -- 7.3.1 Tandem in Space -- 7.3.2 Tandem in Time -- 7.3.3 Multiple Fragmentation -- 7.4 Fragmentation Techniques -- 7.4.1 Introduction -- 7.4.2 (Low‐Energy) Collision‐Induced Dissociation (CID) -- 7.4.3 High-Energy Collisional Dissociation (HCD) -- 7.4.4 Pulsed Q Collision-Induced Dissociation (PQD) -- 7.4.5 Electron Capture Dissociation (ECD) -- 7.4.6 Electron Transfer Dissociation (ETD) -- 7.4.7 Electron Detachment Dissociation (EDD) -- 7.4.8 Negative Electron Transfer Dissociation (NETD) -- 7.4.9 Infrared Multiphoton Dissociation (IRMPD) -- 7.4.10 Blackbody Infrared Radiative Dissociation (BIRD) -- 7.4.11 Post-source Decay (PSD): Metastable Ion Dissociation -- 7.4.12 Surface-Induced Dissociation (SID) -- 7.4.13 Charge Remote Fragmentation -- 7.4.14 Chemically Activated Fragmentation (CAF) -- 7.4.15 Proton Transfer Reaction (PTR) -- 7.5 Practical Aspects of Fragmentation in Mass Spectrometers. 7.5.1 In-Source Fragmentation -- 7.5.2 Triple Quadrupole Fragmentation -- 7.5.3 Ion Traps -- 7.5.4 Time-of-Flight Analyzers -- 7.5.5 Combined Time-of-Flight Analyzers (TOF/TOF) -- 7.5.6 Hybrid Instruments -- 7.5.7 Mass Spectrometers Equipped with Orbitrap Analyzer -- 7.6 Applications of Tandem Mass Spectrometry in Life Sciences -- 7.7 SWATH Fragmentation -- Chapter 8 Mass Spectrometry Applications -- 8.1 Mass Spectrometry in Proteomics -- 8.1.1 Introduction -- 8.1.2 Bottom-Up Versus Top-Down Proteomics -- 8.1.2.1 Bottom-Up Proteomics -- 8.1.2.2 Top-Down Proteomics -- 8.1.3 Database Search and Protein Identification -- 8.1.4 In-Depth Structural Characterization of a Single Protein: An Example -- 8.1.5 Quantitative Analysis in Proteomics -- 8.1.5.1 Introduction -- 8.1.5.2 Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) -- 8.1.5.3 Isotope-Coded Affinity Tagging (ICAT) -- 8.1.5.4 Stable Isotope Labeling in Culture (SILAC) -- 8.1.5.5 Stable Isotope Labeling of Mammals (SILAM) -- 8.1.5.6 Mass-Coded Abundance Tagging (MCAT) -- 8.1.5.7 Label-Free Techniques -- 8.2 Food Proteomics -- 8.3 Challenges in Analysis of Omics Data Generated by Mass Spectrometry -- 8.3.1 Introduction -- 8.3.1.1 How Big Must Big Data Be? -- 8.3.1.2 Do Omics Experiments Generate Unstructured Data? -- 8.3.2 Targeted and Full Unbiased Omics Analysis Based on MS Technology -- 8.3.2.1 Factors Affecting Data Quality -- 8.3.2.2 Speed of MS Data Acquisition: Why Does It Matter? -- 8.3.2.3 Analytical Strategies in Omics Studies -- 8.3.3 Data Analysis and Visualization of Mass Spectrometry Omics Data -- 8.3.3.1 A Brief Introduction to Data Visualization -- 8.3.3.2 Exploration and Preparation of Data for Downstream Statistics and Visualization -- 8.3.3.3 Differential Expression Analysis -- 8.3.3.4 Strategies for Visualization Beyond Three Dimensions -- 8.3.3.5 Bioinformatics Tools. 8.3.4 Databases and Search Algorithms.