Green Photonics and Smart Photonics.
- 1st ed.
- 1 online resource (259 pages)
Cover -- Half Title -- Series -- Title -- Copyright -- Contents -- Preface -- List of Contributors -- List of Figures -- List of Tables -- List of Abbreviations -- Introduction -- 1 Thermal Field Study of Multichip LED Module -- 1.1 Introduction -- 1.1.1 Background of LED -- 1.1.2 Literatures -- 1.2 Structure and Properties of LED Package -- 1.3 Theoretical Studies -- 1.3.1 Heat Transfer -- 1.3.2 Thermal Resistance -- 1.4 Simulation -- 1.5 General Results on Thermal Field Analysis -- 1.5.1 In Terms of K Factor -- 1.5.2 In Terms of Cooling Curve -- 1.5.3 In Terms of Structure Functions -- 1.5.4 In Terms of Estimated Junction Temperature -- References -- 2 Modeling and Simulation of Ge/Si-Nanodisk Array for QD-based IB Solar Cells -- 2.1 Introduction -- 2.2 Fabrication of GE/Si-Nanodisk -- 2.3 The Computational Model -- 2.3.1 Calculation of Electronic Band Structures -- 2.3.2 Calculation of DoSs -- 2.3.3 IBSC Model -- 2.4 1D Superlattice -- 2.5 In-Plane Ge/Si QDs Superlattice -- 2.5.1 Electronic Band Structure -- 2.5.2 Density of States -- 2.5.3 QDs IB SC -- 2.6 Conclusions -- References -- 3 Sputtering Epitaxy of Si and Ge for Application to Solar Cells -- 3.1 Introduction -- 3.2 SE of Si and Ge -- 3.3 Characteristics of Si and Ge Films -- 3.4 Conductivity Control of Epitaxial Ge and Si Films -- 3.5 SC Characteristics -- 3.6 Conclusion -- References -- 4 Non-Stoichiometric SiC-based Solar Cells -- 4.1 Introduction -- 4.2 All Non-Stoichiometric SixC1−x-based p-n Junction SCs -- 4.2.1 The Synthesis of the Non-Stoichiometric SixC1−x-based p-n Junction SC -- 4.2.2 The XPS Analysis of Non-Stoichiometric SixC1−x Film -- 4.2.3 The Optical Absorption Analysis of the Non-Stoichiometric SixC1−x Film -- 4.2.4 The PC Simulation of the Non-Stoichiometric SixC1−x-based p-n Junction SC. 4.2.5 The Performance of the Non-Stoichiometric SixC1−x-based p-n Junction SC -- 4.3 All Non-Stoichiometric SixC1−x-based p-i-n Junction SC -- 4.3.1 The Synthesis of the Non-Stoichiometric SixC1−x-based p-i-n Junction SC -- 4.3.2 Optimizing the Resistivity of n-Type and p-Type Non-Stoichiometric SixC1−x Films by Detuning the PH3- and B2H6-Doping Fluence Ratio in Reactant Gas Recipe -- 4.3.3 The Performance of the Non-Stoichiometric SixC1−x-based p-i-n Junction SC -- 4.4 All Non-Stoichiometric SixC1−x-based p-i-n Junction SCs with Lower C/Si Composition Ratio Grown Intrinsic SixC1−x Layer -- 4.4.1 The Fabrication of the Non-Stoichiometric SixC1−x-based p-i-n Junction SC -- 4.4.2 The XPS Analysis on the Composition of the N on-Stoichiometric SixC1−x Films -- 4.4.3 The Optical Absorption Analysis and PC Simulation of the Non-Stoichiometric SixC1−x Films -- 4.4.4 The Performance of Non-Stoichiometric SixC1−x-based SCs -- 4.5 Conclusion -- References -- 5 Water Splitting Using GaN-based Working Electrodes for Hydrogen Generation with Bias by Solar Cells -- 5.1 Introduction -- 5.2 Experiments -- 5.3 Results and Discussions -- 5.4 Conclusion -- References -- 6 Fiber Amplifiers for Photonic Communication and Sensing -- 6.1 Introduction -- 6.2 Experimental Setup -- 6.2.1 Bidirectional EDFA -- 6.2.2 Raman Fiber Amplifier -- 6.2.3 Bidirectional Hybrid Fiber Amplifier -- 6.2.4 High-Power Erbium Ytterbium Co-Doped Fiber Amplifier (EYDFA) -- 6.3 Results and Discussion -- 6.3.1 Bidirectional EDFA -- 6.3.2 Raman Fiber Amplifier -- 6.3.3 Bidirectional Hybrid Fiber Amplifier -- 6.3.4 High-Power EYDF Amplifier -- 6.4 Conclusion -- References -- 7 High-Sensitivity Pressure, DP, and Random Rotational Angle Fiber Sensors -- 7.1 Fiber Grating Characterization and Fabrication -- 7.2 The Lateral Pressure Sensors based on Fiber Gratings -- 7.2.1 Basic Operation Principle. 7.2.2 Experimental Results -- 7.3 The DP Sensors based on Fiber Gratings -- 7.3.1 Basic Principle -- 7.3.2 Experimental Results -- 7.4 The Rotational Angle Sensors based on Fiber Gratings -- 7.4.1 Basic Operating Principle -- 7.4.2 Experimental Results -- 7.5 Conclusion -- References -- 8 Heterogeneous Integration of Group IV Semiconductors on Si by RMG Method for Implementing High-Speed Optoelectronic Devices -- 8.1 Introduction -- 8.2 Germanium MSM Photodetectors -- 8.3 Self-Assembled Microbonded Ge/Si Heterogeneous Structure -- 8.3.1 Self-Assembled Microbonded Ge on Si by Surface Tension -- 8.3.2 Device Schematics and Fabrication -- 8.3.3 Results and Discussion -- 8.4 Self-Aligned Butt-Coupling of Ge and Si Waveguide -- 8.4.1 Device Schematics and Fabrication -- 8.4.2 Optical Simulation on Coupling Efficiency -- 8.4.3 Measurement Result and Discussion -- 8.5 Germanium-Tin (GeSn) Photodetectors -- 8.5.1 Device Schematics and Fabrication -- 8.5.2 Experimental Results -- 8.6 Conclusion -- References -- 9 SiC Smart Photonic Waveguide Device for Data Processing -- 9.1 Introduction -- 9.1.1 Historical Review of SiC-based Optoelectronic Devices -- 9.1.2 Historical Review of Si-based All-Optical Switching with the Advantages of SiC-based Non-Linear Waveguide Applications -- 9.1.3 Motivation and Chapter Content -- 9.2 Structural Properties of Amorphous Si-Rich SiC -- 9.2.1 Composition of Amorphous Si-Rich SiC -- 9.2.2 Optical Non-Linearity of Amorphous Si-Rich SiC -- 9.3 All Optical Switching in Si-QD-Doped in a-SiC Micro-Ring Resonator -- 9.3.1 Fabrication of Si-QD-Doped in a-SiC Micro-Ring Resonator -- 9.3.2 Operation of SiC Ring Resonator -- 9.4 Conclusion -- References -- 10 Application of Ion Beam Technology in the Synthesis of ZnO Nanostructures -- 10.1 Introduction -- 10.2 Capillaritron Ion Source -- 10.3 ZnO Nanostructures. 10.4 Synthesis of ZnO Nanostructures Utilizing Ion Beam Processing -- 10.5 Experiment and Results -- 10.5.1 Ion Beam Synthesis of Zn Nanoneedles -- 10.5.2 ZnO QDs on Ion Beam Textured Si Substrates -- 10.5.3 ZnO Nanowire by Thermal Oxidation of Metallic Zinc -- 10.5.3.1 Zn foil with ion implantation -- 10.5.3.2 Zn films deposited by ion beam sputter deposition -- 10.5.3.3 Zn films deposited by RF magnetron sputtering -- 10.5.3.4 Zn films deposited by thermal evaporation -- 10.6 Conclusions -- References -- Index -- About the Editors.
This book presents recent advances, both theoretical and applications, reflecting the cutting-edge technologies and research achievements within these research fields.Green Photonics intend to develop photonics technologies that can conserve energy, reduce pollution and create renewable energy.