TY - BOOK AU - Anselmet,Fabien AU - Mattei,Pierre-Olivier TI - Acoustics, Aeroacoustics and Vibrations SN - 9781119178392 AV - QA808.2 -- .A574 2016eb U1 - 534 PY - 2016/// CY - Newark PB - John Wiley & Sons, Incorporated KW - Continuum mechanics--Data processing KW - Electronic books N1 - Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1: A Bit of History -- 1.1. The production of sound -- 1.2. The propagation of sound -- 1.3. The reception of sound -- 1.4. Aeroacoustics -- Chapter 2: Elements of Continuum Mechanics -- 2.1. Mechanics of deformable media -- 2.1.1. Continuum -- 2.1.2. Kinematics of deformable media -- 2.1.2.1. Lagrange's kinematics -- 2.1.2.2. Euler's kinematics -- 2.1.2.3. Kinematics of a surface -- 2.1.2.4. Material derivatives -- 2.1.3. Deformation tensor (or Green's tensor) -- 2.2. Conservation laws -- 2.2.1. Conservation of mass -- 2.2.2. Conservation of momentum -- 2.2.3. Conservation of energy -- 2.3. Constitutive laws -- 2.3.1. Elasticity -- 2.3.1.1. Stress-deformation tensor -- 2.3.1.2. Infinitesimal strain tensor -- 2.3.2. Thermoelasticity and effects of temperature variations -- 2.3.3. Viscoelasticity -- 2.3.3.1. Partial differential operator -- 2.3.3.1.1. Elementary models -- 2.3.3.2. Convolution operator -- 2.3.4. Fluid medium -- 2.4. Hamilton principle -- 2.5. Characteristics of materials -- Chapter 3: Small Mathematics Travel Kit -- 3.1. Measure theory and Lebesgue integration -- 3.1.1. Boolean algebra -- 3.1.2. Measure on a σ-algebra -- 3.1.3. Convergence and integration of measurable functions -- 3.1.4. Functional space - functional -- 3.1.5. Measure as linear functional -- 3.2. Distributions -- 3.2.1. The space D of test functions -- 3.2.2. Distributions definition -- 3.2.3. Operations on distributions -- 3.2.4. N-dimensional generalization -- 3.2.5. Distributions tensor product -- 3.3. Convolution -- 3.3.1. Definition and first properties -- 3.3.2. Convolution algebra and Green's function -- 3.4. Modal methods -- 3.4.1. Eigenmodes of a conservative system -- 3.4.2. Eigenmodes of a non-conservative system -- 3.4.2.1. Eigenmodes-resonance modes; 3.4.2.2. Series expansion of resonance modes -- 3.4.2.3. Damped beam -- 3.4.2.4. Eigenmodes and resonance modes -- 3.4.2.4.1. Norm and scalar product -- Chapter 4: Fluid Acoustics -- 4.1. Acoustics equations -- 4.1.1. Conservation equations -- 4.1.2. Establishment of general equations -- 4.1.3. Establishment of the wave equation -- 4.1.4. Velocity potential -- 4.2. Propagation and general solutions -- 4.2.1. One-dimensional motion -- 4.2.2. Three-dimensional motion -- 4.3. Permanent regime: Helmholtz equation -- 4.3.1. General solutions -- 4.3.1.1. One-dimensional motion -- 4.3.1.2. Two-dimensional motion -- 4.3.1.3. Three-dimensional motion -- 4.3.1.4. Acoustic intensity -- 4.3.2. Green's kernels -- 4.3.3. Wave group, phase velocity and group velocity -- 4.4. Discontinuity equations -- 4.4.1. Interface between two propagating media -- 4.4.2. Interface between a propagating and a non-propagating medium -- 4.5. Impedance: measurement and model -- 4.5.1. Kundt's tube -- 4.5.2. Delany-Bazley model -- 4.6. Homogeneous anisotropic medium -- 4.7. Medium with a slowly varying celerity -- 4.8. Media in motion -- 4.8.1. Homogeneous medium in uniform motion -- 4.8.1.1. Continuity condition for normal displacements -- 4.8.1.2. Green's kernel -- 4.8.2. Plane interface between media in motion -- 4.8.3. Cylindrical interface between media in motion -- 4.8.4. Acoustic radiation of a moving surface -- 4.8.4.1. Geometry and notations -- 4.8.4.2. Equation for wave propagation on the outside of the moving surface -- 4.8.4.3. Green's representation for a sheared jet -- 4.8.4.4. Acoustic field radiated by the cylinder -- 4.8.4.5. Pipe directivity -- 4.8.4.6. Results -- Chapter 5: Radiation, Diffraction, Enclosed Space -- 5.1. Acoustic radiation -- 5.1.1. A simple example -- 5.2. Acoustic radiation of point sources -- 5.2.1. Multipolar sources in a harmonic regime; 5.2.2. Far-field -- 5.3. Radiation of distributed sources -- 5.3.1. Layer potentials -- 5.3.1.1. Simple layer potential -- 5.3.1.2. Double layer potential -- 5.3.2. Green's representation of pressure and introduction to the theory of diffraction -- 5.3.2.1. Green's formula -- 5.3.2.2. Green's representation -- 5.3.2.3. Solving integral equations -- 5.4. Acoustic radiation of a piston in a plane -- 5.4.1. Far-field radiation of a circular piston: directivity -- 5.4.2. Radiation along the axis of a circular piston -- 5.5. Acoustic radiation of a rectangular baffled structure -- 5.6. Acoustic radiation of moving sources -- 5.6.1. Compact and non-compact sources -- 5.6.1.1. Spatially compact source -- 5.6.1.2. Spatially non-compact source (M » 1) -- 5.6.1.3. The case of the flow source -- 5.6.2. Sources in uniform and non-uniform motion -- 5.6.2.1. Doppler effect -- 5.6.2.2. Shock waves -- 5.7. Sound propagation in a bounded medium -- 5.7.1. Eigenfrequencies and resonance frequencies -- 5.7.2. The Helmholtz resonator -- 5.7.3. Example in dimension 1 -- 5.7.4. Example in dimension 3 -- 5.7.5. Propagation of pure sound in a circular enclosure -- 5.7.5.1. Direct integration methods -- 5.7.5.1.1. Separation of variables -- 5.7.5.1.2. Direct integration -- 5.7.5.2. Method of integration by integral equations -- 5.7.5.2.1. Green's representation -- 5.8. Basics of room acoustics -- 5.8.1. The concept of acoustic power -- 5.8.2. Directivity index -- 5.8.3. Reverberation duration -- 5.8.4. Reverberant fields -- 5.8.5. Pressure level in rooms -- 5.8.6. Crossover frequency and the reverberation distance -- 5.9. Sound propagation in a wave guide -- 5.9.1. General solution in a wave guide -- 5.9.2. Physical interpretation and theory of modes -- 5.9.2.1. Modal basis -- 5.9.2.2. Guide with a circular section -- 5.9.2.3. Elements of the modal theory of wave guides; 5.9.3. Green's function -- 5.9.4. Section change -- 5.9.4.1. Discontinuous variation -- 5.9.4.2. Continuous variation: pavilions -- 5.9.5. Propagation in a conduit in the presence of flow -- Chapter 6: Wave Propagation in Elastic Media -- 6.1. Equation of mechanical wave propagation -- 6.2. Free waves -- 6.2.1. Volumic waves -- 6.2.2. Plane wave case -- 6.2.3. Surface waves -- 6.2.3.1. Rayleigh waves -- 6.2.3.2. Scholte-Stoneley waves -- 6.2.3.3. Love waves -- 6.3. Green's kernels in a harmonic regime -- 6.4. Thin body approximation for plannar structures -- 6.4.1. Straight beams -- 6.4.1.1. Displacement field -- 6.4.1.2. Beam operator -- 6.4.1.2.1. Longitudinal vibrations (compression) -- 6.4.1.2.2. Weak formulation of the problem -- 6.4.1.2.3. Transverse vibrations (bending) -- 6.4.1.2.4. Weak formulation of the problem -- 6.4.2. Plane plates -- 6.4.2.1. Displacement field -- 6.4.2.2. Plate operator -- 6.4.2.3. Harmonic regime -- 6.5. Thin body approximation for cylindrical structures -- 6.5.1. Cylinder -- 6.5.1.1. Displacement field -- 6.5.1.2. Thin shell operators -- 6.5.1.3. Elastic potential energy -- 6.5.1.4. Kinetic energy -- 6.5.1.5. Variational equations: operators -- 6.5.1.6. Boundary conditions -- 6.5.1.7. Harmonic regime -- 6.5.1.8. Angular Fourier series -- 6.5.2. Ring -- 6.5.2.1. Displacement field -- 6.5.2.2. Ring operator -- 6.5.2.3. Harmonic regime: solution in angular harmonics -- Chapter 7: Vibrations of Thin Structures -- 7.1. Beam vibrations -- 7.1.1. Beam compression vibrations -- 7.1.1.1. Clamped beam and several solution methods -- 7.1.1.2. Expansion based on eigenmodes -- 7.1.1.3. Solution using Green's representation -- 7.1.1.4. General integration method -- 7.1.1.5. Beam excited at one end -- 7.1.2. Beam bending vibrations -- 7.1.2.1. General solution -- 7.1.2.2. Green's kernels -- 7.1.2.3. Beams of finite length; 7.1.2.4. Supported beam -- 7.1.2.5. Clamped beam -- 7.1.2.6. Other boundary conditions -- 7.1.2.7. Two cantilever beams coupled with a spring -- 7.1.2.8. Identification of mechanical properties -- 7.2. Plate vibrations -- 7.2.1. Infinite plate -- 7.2.1.1. General solution -- 7.2.1.2. Polar coordinates -- 7.2.1.3. Cartesian coordinates -- 7.2.1.4. Dispersion relation -- 7.2.1.5. Green's kernel -- 7.2.1.6. Thick plate -- 7.2.2. Finite plate -- 7.2.2.1. Rectangular plate with simply supported edges -- 7.2.2.2. Modal basis -- 7.2.2.3. Green's kernel -- 7.2.2.4. Clamped or free rectangular plate -- 7.2.2.5. Clamped plate -- 7.2.2.6. Free plate -- 7.2.2.7. Identification of experimental resonance frequencies -- 7.2.2.8. Clamped circular plate -- 7.2.2.9. Forced regime -- 7.2.2.10. Free circular plate -- 7.2.2.11. Supported circular plate -- 7.2.3. Plate of arbitrary shape -- 7.2.3.1. Green's formula -- 7.2.3.2. Green's representation of the displacement of the plate -- 7.2.3.3. Boundary integral equations -- 7.3. Cylindrical shell vibrations -- 7.3.1. Infinite shell -- 7.3.1.1. General solution -- 7.3.1.2. Green's kernel -- 7.3.2. Finite shell -- 7.3.2.1. Special case of the supported shell -- 7.3.2.2. Other boundary conditions -- 7.3.2.3. Green's formula -- 7.3.2.4. Response of a shell excited by a turbulent boundary layer -- Chapter 8: Acoustic Radiation of Thin Plates -- 8.1. First notions of vibroacoustics: a simple example -- 8.1.1. Motion equations -- 8.1.2. Acoustic radiation -- 8.1.3. "Light fluid" approximation -- 8.1.4. Sound transmission -- 8.1.5. Transient regime -- 8.2. Free waves in an infinite plate immersed in a fluid -- 8.2.1. Roots of the dispersion equation -- 8.2.2. Light fluid approximation -- 8.2.2.1. Subsonic regime -- 8.2.2.2. Supersonic regime -- 8.3. Transmission of a plane wave by a thin plate; 8.4. Radiation of an infinite plate under point excitation UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4332412 ER -