TY - BOOK AU - Jovcic,Dragan AU - Ahmed,Khaled TI - High Voltage Direct Current Transmission: Converters, Systems and DC Grids SN - 9781118846681 AV - TK3111.J68 2015 U1 - 621.319/12 PY - 2015/// CY - New York PB - John Wiley & Sons, Incorporated KW - Electric power distribution - Direct current KW - Electronic books N1 - Intro -- Title Page -- Copyright Page -- Contents -- Preface -- Part I HVDC with Current Source Converters -- Chapter 1 Introduction to Line-Commutated HVDC -- 1.1 HVDC Applications -- 1.2 Line-Commutated HVDC Components -- 1.3 DC Cables and Overhead Lines -- 1.4 LCC HVDC Topologies -- 1.5 Losses in LCC HVDC Systems -- 1.6 Conversion of AC Lines to DC -- 1.7 Ultra-High Voltage HVDC -- Chapter 2 Thyristors -- 2.1 Operating Characteristics -- 2.2 Switching Characteristic -- 2.3 Losses in HVDC Thyristors -- 2.4 Valve Structure and Thyristor Snubbers -- 2.5 Thyristor Rating Selection and Overload Capability -- Chapter 3 Six-Pulse Diode and Thyristor Converter -- 3.1 Three-Phase Uncontrolled Bridge -- 3.2 Three-Phase Thyristor Rectifier -- 3.3 Analysis of Commutation Overlap in a Thyristor Converter -- 3.4 Active and Reactive Power in a Three-Phase Thyristor Converter -- 3.5 InverterInverter Operation -- Chapter 4 HVDC Rectifier Station Modelling, Control and Synchronization with AC Systems -- 4.1 HVDC Rectifier Controller -- 4.2 Phase-Locked Loop (PLL) -- Chapter 5 HVDC Inverter Station Modelling and Control -- 5.1 Inverter Controller -- 5.2 Commutation Failure -- Chapter 6 HVDC System V-I Diagrams and Operating Modes -- 6.1 HVDC-Equivalent Circuit -- 6.2 HVDC V-I Operating Diagram -- 6.3 HVDC Power Reversal -- Chapter 7 HVDC Analytical Modelling and Stability -- 7.1 Introduction to Converter and HVDC Modelling -- 7.2 HVDC Analytical Model -- 7.3 CIGRE HVDC Benchmark Model -- 7.4 Converter Modelling, Linearization and Gain Scheduling -- 7.5 AC System Modelling for HVDC Stability Studies -- 7.6 LCC Converter Transformer Model -- 7.7 DC System Model -- 7.8 HVDC-HVAC System Model -- 7.9 Analytical Dynamic Model Verification -- 7.10 Basic HVDC Dynamic Analysis -- 7.11 HVDC Second Harmonic Instability -- 7.12 Oscillations of 100Hz on the DC Side; Chapter 8 HVDC Phasor Modelling and Interactions with AC System -- 8.1 Converter and DC System Phasor Model -- 8.2 Phasor AC System Model and Interaction with the DC System -- 8.3 Inverter AC Voltage and Power Profile as DC Current is Increasing -- 8.4 Influence of Converter Extinction Angle -- 8.5 Influence of Shunt Reactive Power Compensation -- 8.6 Influence of Load at the Converter Terminals -- 8.7 Influence of Operating Mode (DC Voltage Control Mode) -- 8.8 Rectifier Operating Mode -- Chapter 9 HVDC Operation with Weak AC Systems -- 9.1 Introduction -- 9.2 Short-Circuit Ratio and Equivalent Short-Circuit Ratio -- 9.3 Power Transfer between Two AC Systems -- 9.4 Phasor Study of Converter Interactions with Weak AC Systems -- 9.5 System Dynamics (Small Signal Stability) with Low SCR -- 9.6 HVDC Control and Main Circuit Solutions for Weak AC Grids -- 9.7 LCC HVDC with SVC (Static VAR Compensator) -- 9.8 Capacitor-Commutated Converters for HVDC -- 9.9 AC System with Low Inertia -- Chapter 10 Fault Management and HVDC System Protection -- 10.1 Introduction -- 10.2 DC Line Faults -- 10.3 AC System Faults -- 10.4 Internal Faults -- 10.5 System Reconfiguration for Permanent Faults -- 10.6 Overvoltage Protection -- Chapter 11 LCC HVDC System Harmonics -- 11.1 Harmonic Performance Criteria -- 11.2 Harmonic Limits -- 11.3 Thyristor Converter Harmonics -- 11.4 Harmonic Filters -- 11.5 Noncharacteristic Harmonic Reduction Using HVDC Controls -- Bibliography Part I Line Commutated Converter HVDC -- Part II HVDC with Voltage Source Converters -- Chapter 12 VSC HVDC Applications and Topologies, Performance and Cost Comparison with LCC HVDC -- 12.1 Voltage Source Converters (VSC) -- 12.2 Comparison with Line-Commutated Converter (LCC) HVDC -- 12.3 Overhead and Subsea/Underground VSC HVDC Transmission -- 12.4 DC Cable Types with VSC HVDC; 12.5 Monopolar and Bipolar VSC HVDC Systems -- 12.6 VSC HVDC Converter Topologies -- 12.7 VSC HVDC Station Components -- 12.8 AC Reactors -- 12.9 DC Reactors -- Chapter 13 IGBT Switches and VSC Converter Losses -- 13.1 Introduction to IGBT and IGCT -- 13.2 General VSC Converter Switch Requirements -- 13.3 IGBT Technology -- 13.4 High Power IGBT Devices -- 13.5 IEGT Technology -- 13.6 Losses Calculation -- 13.7 Balancing Challenges in Series IGBT Chains -- 13.8 Snubbers Circuits -- Chapter 14 Single-Phase and Three-Phase Two-Level VSC Converters -- 14.1 Introduction -- 14.2 Single-Phase Voltage Source Converter -- 14.3 Three-Phase Voltage Source Converter -- 14.4 Square-Wave, Six-Pulse Operation -- Chapter 15 Two-Level PWM VSC Converters -- 15.1 Introduction -- 15.2 PWM Modulation -- 15.3 Sinusoidal Pulse-Width Modulation (SPWM) -- 15.4 Third Harmonic Injection (THI) -- 15.5 Selective Harmonic Elimination Modulation (SHE) -- 15.6 Converter Losses for Two-Level SPWM VSC -- 15.7 Harmonics with Pulse-Width Modulation (PWM) -- 15.8 Comparison of PWM Modulation Techniques -- Chapter 16 Multilevel VSC Converters -- 16.1 Introduction -- 16.2 Modulation Techniques for Multilevel Converters -- 16.3 Neutral Point Clamped Multilevel Converter -- 16.4 Flying Capacitor Multilevel Converter -- 16.5 H-Bridge Cascaded Converter -- 16.6 Half Bridge Modular Multilevel Converter (MMC) -- 16.7 MMC Based on Full Bridge Topology -- 16.8 Comparison of Multilevel Topologies -- Chapter 17 Two-Level PWM VSC HVDC Modelling, Control and Dynamics -- 17.1 PWM Two-Level Converter Average Model -- 17.2 Two-Level PWM Converter Model in DQ Frame -- 17.3 VSC Converter Transformer Model -- 17.4 Two-Level VSC Converter and AC Grid Model in ABC Frame -- 17.5 Two-Level VSC Converter and AC Grid Model in DQ Rotating Coordinate Frame -- 17.6 VSC Converter Control Principles; 17.7 The Inner Current Controller Design -- 17.8 Outer Controller Design -- 17.9 Complete VSC Converter Controller -- 17.10 Small-Signal Linearized VSC HVDC Model -- 17.11 Small-Signal Dynamic Studies -- Chapter 18 Two-Level VSC HVDC Phasor-Domain Interaction with AC Systems and PQ Operating Diagrams -- 18.1 Power Exchange between Two AC Voltage Sources -- 18.2 Converter Phasor Model and Power Exchange with an AC System -- 18.3 Phasor Study of VSC Converter Interaction with AC System -- 18.4 Operating Limits -- 18.5 Design Point Selection -- 18.6 Influence of AC System Strength -- 18.7 Influence of Transformer Reactance -- 18.8 Operation with Very Weak AC Systems -- Chapter 19 Half Bridge MMC Converter: Modelling, Control and Operating PQ Diagrams -- 19.1 Half Bridge MMC Converter Average Model in ABC Frame -- 19.2 Half-Bridge MMC Converter-Static DQ Frame and Phasor Model -- 19.3 Differential Current at Second Harmonic -- 19.4 Complete MMC Converter DQ Model in Matrix Form -- 19.5 Second Harmonic Circulating Current Suppression Controller -- 19.6 DQ Frame Model of MMC with Circulating Current Controller -- 19.7 Phasor Model of MMC with Circulating Current Suppression Controller -- 19.8 Dynamic MMC Model Using Equivalent Series Capacitor CMMC -- 19.9 Full Dynamic Analytical MMC Model -- 19.10 MMC Converter Controller -- 19.11 MMC Total Series Reactance in the Phasor Model -- 19.12 MMC VSC Interaction with AC System and PQ Operating Diagrams -- Chapter 20 VSC HVDC under AC and DC Fault Conditions -- 20.1 Introduction -- 20.2 Faults on the AC System -- 20.3 DC Faults with Two-Level VSC -- 20.4 Influence of DC Capacitors -- 20.5 VSC Converter Modelling under DC Faults and VSC Diode Bridge -- 20.6 Converter-Mode Transitions as DC Voltage Reduces -- 20.7 DC Faults with Half-Bridge Modular Multilevel Converter; 20.8 DC Faults with Full-Bridge Modular Multilevel Converter -- Chapter 21 VSC HVDC Application for AC Grid Support and Operation with Passive AC Systems -- 21.1 VSC HVDC High-Level Controls and AC Grid Support -- 21.2 HVDC Embedded inside an AC Grid -- 21.3 HVDC Connecting Two Separate AC Grids -- 21.4 HVDC in Parallel with AC -- 21.5 Operation with a Passive AC System and Black Start Capability -- 21.6 VSC HVDC Operation with Offshore Wind Farms -- 21.7 VSC HVDC Supplying Power Offshore and Driving a MW-Size Variable-Speed Motor -- Bibliography Part II Voltage Source Converter HVDC -- Part III DC Transmission Grids -- Chapter 22 Introduction to DC Grids -- 22.1 DC versus AC Transmission -- 22.2 Terminology -- 22.3 DC Grid Planning, Topology and Power-Transfer Security -- 22.4 Technical Challenges -- 22.5 DC Grid Building by Multiple Manufacturers -- 22.6 Economic Aspects -- Chapter 23 DC Grids with Line-Commutated Converters -- 23.1 Multiterminal HVDC -- 23.2 Italy-Corsica-Sardinia Multiterminal HVDC Link -- 23.3 Connecting LCC Converter to a DC Grid -- 23.4 Control of LCC Converters in DC Grids -- 23.5 Control of LCC DC Grids through DC Voltage Droop Feedback -- 23.6 Managing LCC DC Grid Faults -- 23.7 Reactive Power Issues -- 23.8 Large LCC Rectifier Stations in DC Grids -- Chapter 24 DC Grids with Voltage Source Converters and Power-Flow Model -- 24.1 Connecting a VSC Converter to a DC Grid -- 24.2 DC Grid Power Flow Model -- 24.3 DC Grid Power Flow under DC Faults -- Chapter 25 DC Grid Control -- 25.1 Introduction -- 25.2 Fast Local VSC Converter Control in DC Grids -- 25.3 DC Grid Dispatcher with Remote Communication -- 25.4 Primary, Secondary and Tertiary DC Grid Control -- 25.5 DC Voltage Droop Control for VSC Converters in DC Grids -- 25.6 Three-Level Control for VSC Converters with Dispatcher Droop; 25.7 Power Flow Algorithm When DC Powers are Regulated UR - https://ebookcentral.proquest.com/lib/orpp/detail.action?docID=4039215 ER -