Bioceramics and Biocomposites : From Research to Clinical Practice.
Material type:
- text
- computer
- online resource
- 9781119372134
- 610.28
- R857.M3 .B563 2019
Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Chapter 1 Multifunctionalized Ferri‐liposomes for Hyperthermia Induced Glioma Targeting and Brain Drug Delivery -- 1.1 Introduction -- 1.1.1 Blood-brain Barrier -- 1.1.1.1 What is the Blood-brain Barrier (BBB)? -- 1.1.1.2 The BBB Formation and Composition -- 1.1.1.3 Endothelial Cell and Tight Junctions -- 1.1.1.4 Astrocytes -- 1.1.1.5 Glioma -- 1.1.2 New Strategies for Measuring Drug Transport Across the BBB -- 1.2 Liposome -- 1.2.1 Introduction -- 1.2.2 Functionalization of Liposomes -- 1.2.2.1 PEGylation -- 1.2.2.2 Ligand‐mediated Liposome Targeting -- 1.2.2.3 Cell‐penetrating Peptide (CPP) Modification -- 1.2.3 Physiologically Modified Liposomes -- 1.2.3.1 PH‐sensitive Liposome -- 1.2.3.2 Thermosensitive Liposomes -- 1.2.4 Liposome in Combinational Therapies -- 1.2.4.1 CPP and Antibody Co‐delivery System -- 1.2.4.2 Superparamagnetic Iron Oxide Nanoparticles‐Induced Hyperthermia Treatment -- 1.3 Experimental -- 1.3.1 In Vitro BBB Model Set Up -- 1.3.2 Immunostaining and Confocal Imaging -- 1.4 Liposome Synthesis -- 1.4.1 Material Characterization -- 1.4.2 DOX Release and Loading Efficiency -- 1.4.3 Liposome Permeability Study -- References -- Chapter 2 Biofabrication Techniques for Ceramics and Composite Bone Scaffolds -- 2.1 Introduction -- 2.2 Scaffolds -- 2.2.1 Materials -- 2.3 Manufacturing Processes -- 2.3.1 Extrusion‐based Processes -- 2.3.2 Vat‐photopolymerization Processes -- 2.3.3 Powder Bed Fusion Processes -- 2.3.4 Inkjet Printing Processes -- 2.4 Conclusion -- References -- Chapter 3 Developments in Hydrogel‐based Scaffolds and Bioceramics for Bone Regeneration -- 3.1 Introduction -- 3.2 Directions in the Design of Hydrogels for Bone Regeneration -- 3.2.1 On the Preparation of Bioinspired and Biomimetic Hydrogels.
3.2.2 Biofunctionalization of Non‐adhesive Macromolecules with Cell‐adhesive Peptides or Other Bioactive Molecules -- 3.2.3 Engineering of Synthetic Hydrogels with Bioactive or Biodegradable Sites -- 3.2.4 Nanoparticle‐loaded Fibrous Hydrogels for Bone Regeneration -- 3.2.5 Biomineralization and Hydrogels Bearing Negatively Charged Groups -- 3.2.5.1 Polymers Containing Acidic Functional Groups -- 3.2.5.2 Phosphorus‐containing Polymers Enhance Mineralization -- 3.3 Ca/P Biomaterials for Bone Regeneration -- 3.3.1 Introduction: Remaining Challenges -- 3.3.2 Micro‐ and Nanocomputed Tomography for the Study of Porous Ca/P Biomaterials -- 3.3.3 Preparation of 3D Porous Blocks and Granules of Ca/P Ceramics -- 3.3.3.1 Changing the Shape of Ca/P Granular Biomaterial Affects its Biomechanical Resistance -- 3.3.3.2 Changing the Shape of a Granular Biomaterial Affects its 3D Porosity -- 3.3.3.3 Changing the 3D Porosity of a Porous Biomaterial Modifies Liquid Diffusion -- 3.4 Perspectives -- Acknowledgments -- References -- Chapter 4 Zirconia‐Based Composites for Biomedical Applications -- 4.1 Introduction -- 4.2 Inert Ceramics for Biomedical Applications: Monolithic Al2O3 and ZrO2 -- 4.2.1 Alumina (a‐Al2O3) -- 4.2.2 Zirconia (ZrO2) -- 4.2.3 Inert Ceramics for Biomedical Applications: ZTA Composites -- 4.3 New Approach for Biomedical Grade Ceramics: Zirconia‐Based Composites -- 4.3.1 Y‐TZP/Al2O3 Composites -- 4.3.2 Ce‐TZP‐Based Composites -- 4.3.2.1 Ce‐TZP/Al2O3 Composites -- 4.3.2.2 Ce‐TZP/MgAl2O4 Composites -- 4.3.2.3 Ce‐TZP‐Based Composites Containing Elongated Grains -- 4.3.3 ZrO2/Hydroxyapatite Composites -- 4.4 Conclusion -- References -- Chapter 5 Bioceramics Derived from Marble and Sea Shells as Potential Bone Substitution Materials -- 5.1 Introduction -- 5.2 Biomimetic Approaches for Biomaterials Design -- 5.2.1 Apatites -- 5.2.2 Calcium Carbonates.
5.3 Biogenic Precursors for Hydroxyapatite -- 5.3.1 Marble -- 5.3.2 Sea Shells -- 5.4 Synthesis Routes -- 5.4.1 Preparation of Precursors -- 5.4.2 Basic Techniques for Hydroxyapatite Synthesis -- 5.4.2.1 Wet Precipitation -- 5.4.2.2 Mechano‐Chemical Technique -- 5.4.2.3 Hydrothermal Technique -- 5.4.2.4 Sol-Gel Technique -- 5.4.2.5 Microemulsion by High‐Pressure Homogenization (HPH) -- 5.4.3 Synthesis of Hydroxyapatite by Thermal Treatment of Marble and Shells -- 5.4.3.1 Calcination of the Raw Material -- 5.4.3.2 Calcium Oxide Conversion into Hydroxyapatite -- 5.4.4 Synthesis of Hydroxyapatite by Chemical Treatment of Marble and Shells -- 5.4.4.1 Hydrothermal Methods -- 5.4.4.2 Sol-Gel Methods -- 5.4.4.3 Microemulsion by High‐Pressure Homogenization (HPH) -- 5.5 Processing of Marble and Shells‐Derived Hydroxyapatite -- 5.5.1 Thermal Processing of the Hydroxyapatite Powder -- 5.5.2 Dense Products (Pellets) -- 5.5.3 Porous Products (Scaffolds) -- 5.5.3.1 Conventional Processing Methods -- 5.5.3.2 Solid Free‐Form (SFF) Techniques -- 5.6 Material Characterization -- 5.6.1 Chemical Composition -- 5.6.2 Structure -- 5.6.2.1 X‐Ray Diffraction (XRD) Studies -- 5.6.2.2 Fourier Transformed Infrared (FT‐IR) Spectroscopy Analyses -- 5.6.3 Morphology -- 5.6.3.1 Morphology of Powders -- 5.6.3.2 Morphology of Dense Products (Pellets) -- 5.6.3.3 Morphology of Porous Products (Scaffolds) -- 5.6.4 Mechanical Properties -- 5.6.5 Thermal Stability -- 5.6.5.1 Dimensional Stability -- 5.6.5.2 Mass Stability -- 5.7 In vitro Behavior -- 5.7.1 Biocompatibility -- 5.8 Degradation in Biological Environment -- 5.9 In vivo Performance Evaluation -- 5.10 Conclusions -- Acknowledgment -- References -- Chapter 6 Bioglasses and Glass‐Ceramics in the Na2O-CaO-MgO-SiO2-P2O5-CaF2 System -- 6.1 Introduction -- 6.2 General Technical Aspects -- 6.3 Design of Compositions.
6.3.1 CaO-MgO-SiO2 System -- 6.3.2 Na2O-CaO-SiO2 System -- 6.3.3 Modifications: Addition of B2O3, P2O5, CaF2, and Na2O to CaO-MgO-SiO2 System -- 6.4 Materials and Methods -- 6.4.1 Synthesis -- 6.4.2 Characterization Techniques -- 6.5 Structural Features of Glasses, Devitrification, and Materials' Properties -- 6.5.1 B‐ and Al‐Containing Glasses and Glass‐Ceramics -- 6.5.2 B‐Containing Glasses and Glass‐Ceramics (Al‐Free) -- 6.5.2.1 Glasses -- 6.5.2.2 Crystallization of Bulk Glasses -- 6.5.2.3 Glass‐Ceramics from Glass‐Powders Compacts -- 6.5.3 B‐Free (and Al‐Free) Glasses and Glass‐Ceramics -- 6.6 In vitro Biomineralization Ability (SBF Tests and HA Formation) -- 6.7 Cell Culture Testing and Tissue Response -- 6.8 Animal Testing and Clinical Tests -- 6.8.1 In vivo Animal Tests -- 6.8.2 Clinical Trials -- 6.9 Concluding Remarks -- Acknowledgments -- Bibliography -- Chapter 7 Electrical Functionalization and Fabrication of Nanostructured Hydroxyapatite Coatings -- 7.1 Introduction -- 7.2 Necessity and Prerequisites of Electrical Functionalization of Hydroxyapatite to Control Bone Cell Attachment -- 7.3 Computed Designing of Nanostructured Hydroxyapatite Electrical Potential (Structurally Depended Functionalization) -- 7.3.1 Introduction: Nanostructured HA as Assembled from Nanoclusters -- 7.4 HA Clusters and Nanoparticles (NPs) -- 7.4.1 Formation of HA Crystal from HA NPs in Various Conditions, Size, and Shape Effects -- 7.4.2 Main Features of Electrical Field, Charges, and Potential Inside and Outside of HA Surface -- 7.4.3 Bulk HA Crystal Structures Design (Infinite Periodical Lattice) and Electrical Potential -- 7.4.4 Imperfect Crystal with Defects -- 7.4.5 DOS for O, H, and OH Vacancies and H and OH Interstitials -- 7.4.6 Exploration of Influences of Various Atoms Substitutions in HA Structure and Properties.
7.4.7 Studies of the Substitution Influences of Mg, Sr, and Si Atoms -- 7.4.8 Studies and Calculations of Mn and Se Substitutions -- 7.4.9 Combined DOS from Substituted Atoms and OH Vacancy -- 7.4.10 First Principle to Design HA Nanostructured Surface Properties -- 7.4.10.1 Super‐Cell and Slabs Approaches for HA "Surface‐Vacuum" Nanostructure Modeling - Various Versions of the Contemporary Developed Models and Calculations, Based on Different ab Initio/DFT Approaches -- 7.4.10.2 Surface Charges and Surface Energy for Different HA Surfaces with Different Stoichoimetry in Various Models -- 7.4.11 The Electron Work Function (from Data of the HA DFT Modeling) to Characterize HA Surface Electrical Charge -- 7.4.12 Characterization of Electrical Functionalization -- 7.4.13 Eguchi Originated Technique -- 7.4.14 Prethreshold Photoelectron Spectroscopy -- 7.5 Fabrication of Nanostructured Hydroxyapatite Coatings -- 7.5.1 rf‐Magnetron Technique -- 7.5.2 Engineering of CP Coatings Having Different Morphology and Structures -- 7.5.3 Doping of the CP Coating by Substitutions -- 7.5.4 Characterization of Coatings: Physical and Chemical Properties of rf‐Magnetron CP Coatings -- 7.5.5 The Biomedical Properties of rf‐Magnetron CP Coatings -- 7.6 Biological Properties of the Electrically Functionalized Hydroxyapatite Coatings -- 7.6.1 Introduction -- 7.7 Biocompatibility of Nanostructured and Electrically Functionalized Hydroxyapatite Coatings: Subcutaneous Model -- 7.7.1 Tissue and Bone in Vivo Growth on Electrically Functionalized Hydroxyapatite Coatings on the Titanium Substrate -- 7.8 General Conclusions -- References -- Chapter 8 Bioactive Micro‐arc Calcium Phosphate Coatings on Nanostructured and Ultrafine‐Grained Bioinert Metals and Alloys.
8.1 Bioinert Alloys in Nanostructured and Ultrafine‐Grained States and Bioactive Calcium Phosphate Coatings for Medical Applications.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.