ORPP logo
Image from Google Jackets

Invitation to Number Theory.

By: Material type: TextTextSeries: Anneli Lax New Mathematical LibraryPublisher: Washington : American Mathematical Society, 1967Copyright date: ©1967Edition: 1st edDescription: 1 online resource (140 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9780883859605
Subject(s): Genre/Form: Additional physical formats: Print version:: Invitation to Number TheoryDDC classification:
  • 512.7
LOC classification:
  • QA241 -- .O74 1967eb
Online resources:
Contents:
Front Cover -- Invitation to Number Theory -- Copyright Page -- Contents -- Chapter 1. Introduction -- 1.1 History -- 1.2 Numerology -- 1.3 The Pythagorean problem -- 1.4 Figurate numbers -- 1.5 Magic squares -- Chapter 2. Primes -- 2.1 Primes and composite numbers -- 2.2 Mersenne primes -- 2.3 Fermat primes -- 2.4 The sieve of Eratosthenes -- Chapter 3. Divisors of Numbers -- 3.1 Fundamental factorization theorem -- 3.2 Divisors -- 3.3 Problems concerning divisors -- 3.4 Perfect numbers -- 3.5 Amicable numbers -- Chapter 4. Greatest Common Divisor and Least Common Multiple -- 4.1 Greatest common divisor -- 4.2 Relatively prime numbers -- 4.3 Euclid's algorithm -- 4.4 Least common multiple -- Chapter 5. The Pythagorean Problem -- 5.1 Preliminaries -- 5.2 Solutions of the Pythagorean equation -- 5.3 Problems connected with Pythagorean triangles -- Chapter 6. Numeration Systems -- 6.1 Numbers for the millions -- 6.2 Other systems -- 6.3 Comparison of numeration systems -- 6.4 Some problems concerning numeration systems -- 6.5 Computers and their numeration systems -- 6.6 Games with digits -- Chapter 7. Congruences -- 7.1 Definition of congruence -- 7.2 Some properties of congruences -- 7.3 The algebra of congruences -- 7.4 Powers of congruences -- 7.5 Fermat's congruence -- Chapter 8. Some Applications of Congruences -- 8.1 Checks on computations -- 8.2 The days of the week -- 8.3 Tournament schedules -- 8.4 Prime or composite? -- Solutions to Selected Problems -- References -- Index.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Front Cover -- Invitation to Number Theory -- Copyright Page -- Contents -- Chapter 1. Introduction -- 1.1 History -- 1.2 Numerology -- 1.3 The Pythagorean problem -- 1.4 Figurate numbers -- 1.5 Magic squares -- Chapter 2. Primes -- 2.1 Primes and composite numbers -- 2.2 Mersenne primes -- 2.3 Fermat primes -- 2.4 The sieve of Eratosthenes -- Chapter 3. Divisors of Numbers -- 3.1 Fundamental factorization theorem -- 3.2 Divisors -- 3.3 Problems concerning divisors -- 3.4 Perfect numbers -- 3.5 Amicable numbers -- Chapter 4. Greatest Common Divisor and Least Common Multiple -- 4.1 Greatest common divisor -- 4.2 Relatively prime numbers -- 4.3 Euclid's algorithm -- 4.4 Least common multiple -- Chapter 5. The Pythagorean Problem -- 5.1 Preliminaries -- 5.2 Solutions of the Pythagorean equation -- 5.3 Problems connected with Pythagorean triangles -- Chapter 6. Numeration Systems -- 6.1 Numbers for the millions -- 6.2 Other systems -- 6.3 Comparison of numeration systems -- 6.4 Some problems concerning numeration systems -- 6.5 Computers and their numeration systems -- 6.6 Games with digits -- Chapter 7. Congruences -- 7.1 Definition of congruence -- 7.2 Some properties of congruences -- 7.3 The algebra of congruences -- 7.4 Powers of congruences -- 7.5 Fermat's congruence -- Chapter 8. Some Applications of Congruences -- 8.1 Checks on computations -- 8.2 The days of the week -- 8.3 Tournament schedules -- 8.4 Prime or composite? -- Solutions to Selected Problems -- References -- Index.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.