ORPP logo
Image from Google Jackets

Applications of Activated Sludge Models.

By: Contributor(s): Material type: TextTextPublisher: London : IWA Publishing, 2015Copyright date: ©2015Edition: 1st edDescription: 1 online resource (472 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781780404660
Subject(s): Genre/Form: Additional physical formats: Print version:: Applications of Activated Sludge ModelsDDC classification:
  • 628.354
LOC classification:
  • TD756 -- .B73 2015eb
Online resources:
Contents:
Cover -- Copyright -- About the editors -- My (and others) most unforgettable character - A tribute to Professor GvR Marais -- Foreword -- Preface -- Contents -- Chapter 1: Introduction to modelling of activated sludge processes -- 1.1 What is a model? -- 1.2 Modeling basics -- 1.2.1 Model building -- 1.2.2 General model set-up -- 1.2.3 Stoichiometry -- 1.2.4 Kinetics -- 1.2.5 Transport -- 1.2.6 The matrix notation -- 1.3 The stepwise development of biokinetic model: ASM 1 -- 1.4 ASM3 -- 1.5 The metabolic model -- 1.6 Other developments on metabolic modelling -- 1.7 Activated sludge model development history -- 1.8 Simulator environments -- 1.9 Introduction to general modeling protocols -- 1.9.1 The inception phase -- 1.9.2 The initial model construction -- 1.9.3 Data acquisition and evaluation -- 1.9.4 The model simulation and calibration phase -- 1.9.5 The model retrofit and validation -- 1.9.6 The operational plant assessment -- 1.9.7 The model scenarios -- 1.10 The STOWA protocol -- 1.11 Influent characterization guidelines -- 1.12 Model calibration -- 1.13 The stepwise data approach to data acquisition -- 1.14 Measurements planning -- 1.15 Standards for project presentations -- 1.16 Errors and inconsistent information -- 1.17 Model accuracy -- 1.18 Modeling and modern wastewater management -- 1.19 Conclusions -- References -- Nomenclature -- Annex 1.1 Combined ASM2 and TUDP model -- Chapter 2: WWTP Holten, the Netherlands: Model development and full-scale testing -- 2.1 Introduction -- 2.2 Model kinetics and stoichiometry -- 2.2 Process description of WWTP Holten -- 2.3 Sensitivity analysis -- 2.3.1 Sludge production -- 2.3.2 Concentrations -- 2.3.3 Set-up of hydraulic model -- 2.4 Calibration and validation -- 2.4.1 Performance -- 2.4.2 Calibration -- 2.4.3 Validation -- 2.5 Discussion -- 2.6 Conclusions -- Acknowledgements -- References.
Chapter 3: WWTP Haarlem Waarderpolder, the Netherlands: Model Evaluation of a full-scale bio-P side-stream process -- 3.1 Introduction -- 3.2 Materials and methods -- 3.2.1 Configuration of WWTP Haarlem Waarderpolder -- 3.2.1.1 Conventional anoxic-aerobic activated sludge treatment -- 3.2.1.2 Phosphorus selection and precipitation line -- 3.2.1.3 Sludge treatment line -- 3.2.2 Influent characterization -- 3.2.3 Batch experiments -- 3.2.3.1 Anaerobic phosphorus release -- 3.2.3.2 Aerobic phosphorus uptake -- 3.2.3.3 Anoxic phosphorus uptake -- 3.2.3.4 Fraction of denitrifying activity of PAO -- 3.2.3.5 Nitrification -- 3.2.3.6 Denitrification -- 3.2.3.7 Endogenous phosphorus release -- 3.2.4 Sampling program and analytical methods -- 3.2.5 Modeling tools -- 3.2.6 Modeling strategy -- 3.3 Results -- 3.3.1 Sampling program -- 3.3.2 Influent and sludge characterization -- 3.3.3 Hydraulic set-up of the plant model -- 3.3.4 Model calibration -- 3.3.4.1 Calibration procedure -- 3.3.5 Model evaluation -- 3.3.5.1 Maximal anaerobic phosphate release -- 3.3.5.2 Aerobic and anoxic phosphate uptake -- 3.3.5.3 Nitrification -- 3.3.5.4 Denitrification -- 3.3.5.5 Endogenous phosphorus release -- 3.3.6 Alternative EBPR process configurations -- 3.3.6.1 Alternatives 1a and 1b: A/O system configuration -- 3.3.6.2 Alternatives 2a and 2b: modified UCT system configuration -- 3.3.6.3 Alternative 3a and 3b: BCFS system configuration -- 3.4 Discussion -- 3.4.1 Influent characterization -- 3.4.2 Model calibration -- 3.4.3 Operational aspects -- 3.4.4 Practical aspects -- 3.5 Conclusions -- Acknowledgements -- References -- Annex 3.1: Influent characterization procedure according to Dutch guidelines (STOWA, 1996) -- Annex 3.2: Results of the sampling program and data collected by the plant staff (April 1997).
Annex 3.3: Process configurations schemes of the WWTP Haarlem Waarderpolder -- Chapter 4: WWTP Katwoude, the Netherlands: Development of wastewater treatment data verification techniques -- 4.1 Introduction -- 4.2 WWTP Katwoude -- 4.2.1 Process description -- 4.2.2 Measurements -- 4.2.3 The process model -- 4.2.4 Introducing Macrobal -- 4.3 Error detection and data reconciliation -- 4.3.1 Estimation of the SRT -- 4.3.2 Balancing operational data -- 4.4 Model calibration and simulation -- 4.4.1 Fitting the sludge production -- 4.4.2 Calibrating nitrification, denitrification and EBPR -- 4.5. Discussion -- 4.5.1 Balancing conserved compounds -- 4.5.2 Calibrating EBPR -- 4.5.3 Calibrating N fractions -- 4.6 Conclusions -- References -- Chapter 5: WWTP Hardenberg, the Netherlands: Modelling full-scale start-up of the BCFS® process -- Part 1: Modelling regular operation of WWTP Hardenberg -- 5.1 Introduction -- 5.2 Materials and methods -- 5.2.1 WWTP Hardenberg -- 5.2.2 Measurements -- 5.2.3 The WWTP Hardenberg model -- 5.2.4 Model adjustments -- 5.2.5 Influent characterisation -- 5.3 Data evaluation -- 5.3.1 Initial simulation -- 5.3.2 Evaluation of the SRT -- 5.3.3 Evaluation of recycle flow A -- 5.3.4 Evaluation of recycle flow B -- 5.4 Model calibration -- 5.4.1 Simultaneous nitrification and denitrification -- 5.5 Discussion -- 5.5.1 Fitting models on faulty data -- 5.5.2 Sensitivity analysis -- 5.5.3 A heuristic calibration approach -- 5.5.4 The calibration procedure -- 5.5.5 Balancing solids -- 5.5.6 Calibrating KO -- 5.5.7 The COD and N balance -- 5.6 Conclusions on the modelling of regular plant operation -- Part 2: Modelling start-up of WWTP Hardenberg -- 5.7 Introduction -- 5.8 Materials and methods -- 5.8.1 The start-up procedure -- 5.8.2 Recording the original WWTP -- 5.8.3 Measuring the start-up -- 5.8.4 Models.
5.8.4.1 Model of the old WWTP -- 5.8.4.2 Model of the new WWTP -- 5.8.5 Solids retention in the anaerobic reactor -- 5.8.6 Modelling temperature -- 5.9 Model calibration and simulation -- 5.9.1 Data evaluation -- 5.9.2 Calibrating the model of the old WWTP -- 5.9.3 Calibrating the start-up -- 5.10 Evaluation of the TUDP model -- 5.10.1 Sensitivity analysis -- 5.10.2 Calibrating EBPR -- 5.11 Discussion -- 5.11.1 Influent characterisation -- 5.11.2 Simulation of the old WWTP -- 5.11.3 Modelling chemical P precipitation -- 5.11.4 Modelling anaerobic solids retention time -- 5.11.5 Dynamic evaluation of operational conditions -- 5.11.6 Interpretation of the start-up dynamics -- 5.11.6.1 Glycogen kinetics -- 5.11.6.2 Modelling a maximum glycogen fraction -- 5.11.6.3 Model sensitivity towards the maximum glycogen fraction -- 5.11.6.4 Temperature effects -- 5.12 Conclusions on start-up simulations -- References -- Chapter 6: WWTP Shell Godorf, Germany Optimization of oil refinery wastewater treatment -- 6.1 Introduction -- 6.2 Materials and Methods -- 6.2.1 Wastewater treatment plant configuration -- 6.2.2 Influent characterization -- 6.2.3 Sampling campaign -- 6.2.4 Experimental program -- 6.3 Modeling tools -- 6.4 Calibration strategy -- 6.5 Results -- 6.5.1 Influent characterization -- 6.5.2 Sampling campaign -- 6.6 Experimental campaign -- 6.5.1 Nitrification test -- 6.5.2 Denitrification test -- 6.5.3 Hydraulic set-up of the plant model -- 6.5.4 Model calibration and simulation -- 6.5.5 Model validation -- 6.5.6 Performance evaluation -- 6.6 Process optimization -- 6.6.1 Scenario 1: Implementation of an idle phase -- 6.6.2 Scenario 2: Transforming B3 basin from aerobic to anoxic -- 6.6.3 Scenario 3: Combined pre- and post-denitrification with external methanol addition -- 6.7 Discussion -- 6.8 Conclusions -- References.
Chapter 7: WWTP Walcheren, the Netherlands: Model-based evaluation of a novel upgrading concept for N removal -- 7.1 Introduction -- 7.2 Materials and methods -- 7.2.1 Walcheren wastewater treatment plant -- 7.2.2 Wastewater characterization -- 7.2.3 The BABE reactor -- 7.3 Results and discussion -- 7.3.1 Increasing the DO in the aeration tanks -- 7.3.2 Upgrading of the WWTP by the BABE concept -- 7.3.3 Modification of the WWTP Walcheren to meet the effluent requirements -- 7.3.4 Comparison of the upgrading strategies for the Walcheren WWTP -- 7.3.5 Use of modelling -- 7.4 Conclusions -- Acknowledgements -- References -- Chapter 8: WWTP Anjana, India: Coupling models for integrated and plant wide modelling -- 8.1 Introduction -- 8.2 Materials and methods -- 8.2.1 WWTP Anjana -- 8.2.2 Sampling program and analytical methods -- 8.2.3 Wastewater and sludge characterization -- 8.2.4 Model building and ASM3-ADM1 coupling -- 8.2.5 ADM1-ASM3 coupling -- 8.2.6 Modelling strategy -- 8.2.7 Model calibration and validation -- 8.2.8 Scenarios evaluation for process upgrade and optimization -- 8.3 Results -- 8.3.1 Model calibration -- 8.3.2 Model validation -- 8.3.3 Model-based evaluation for process optimization and upgrade -- 8.3.4 Modelling the return of the filtrate stream -- 8.4 Discussion -- 8.4.1 Influent and sludge characterization -- 8.4.2 Model calibration -- 8.4.3 Model coupling -- 8.4.4 Plant performance assessment for current and future scenarios -- 8.5 Conclusions -- Acknowledgements -- References -- Chapter 9: WWTP Ecco, the Netherlands: Modelling nitrogen removal from tannery wastewater -- 9.1 Introduction -- 9.2 Materials and methods -- 9.2.1 Plant and process description -- 9.2 Measurements -- 9.3 Process model (selection and adjustment) -- 9.4 Influent measurement and characterization -- 9.5 Balancing operational data and measurements.
9.5.1 Estimation of sludge age, Q recycling and Qin2.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Copyright -- About the editors -- My (and others) most unforgettable character - A tribute to Professor GvR Marais -- Foreword -- Preface -- Contents -- Chapter 1: Introduction to modelling of activated sludge processes -- 1.1 What is a model? -- 1.2 Modeling basics -- 1.2.1 Model building -- 1.2.2 General model set-up -- 1.2.3 Stoichiometry -- 1.2.4 Kinetics -- 1.2.5 Transport -- 1.2.6 The matrix notation -- 1.3 The stepwise development of biokinetic model: ASM 1 -- 1.4 ASM3 -- 1.5 The metabolic model -- 1.6 Other developments on metabolic modelling -- 1.7 Activated sludge model development history -- 1.8 Simulator environments -- 1.9 Introduction to general modeling protocols -- 1.9.1 The inception phase -- 1.9.2 The initial model construction -- 1.9.3 Data acquisition and evaluation -- 1.9.4 The model simulation and calibration phase -- 1.9.5 The model retrofit and validation -- 1.9.6 The operational plant assessment -- 1.9.7 The model scenarios -- 1.10 The STOWA protocol -- 1.11 Influent characterization guidelines -- 1.12 Model calibration -- 1.13 The stepwise data approach to data acquisition -- 1.14 Measurements planning -- 1.15 Standards for project presentations -- 1.16 Errors and inconsistent information -- 1.17 Model accuracy -- 1.18 Modeling and modern wastewater management -- 1.19 Conclusions -- References -- Nomenclature -- Annex 1.1 Combined ASM2 and TUDP model -- Chapter 2: WWTP Holten, the Netherlands: Model development and full-scale testing -- 2.1 Introduction -- 2.2 Model kinetics and stoichiometry -- 2.2 Process description of WWTP Holten -- 2.3 Sensitivity analysis -- 2.3.1 Sludge production -- 2.3.2 Concentrations -- 2.3.3 Set-up of hydraulic model -- 2.4 Calibration and validation -- 2.4.1 Performance -- 2.4.2 Calibration -- 2.4.3 Validation -- 2.5 Discussion -- 2.6 Conclusions -- Acknowledgements -- References.

Chapter 3: WWTP Haarlem Waarderpolder, the Netherlands: Model Evaluation of a full-scale bio-P side-stream process -- 3.1 Introduction -- 3.2 Materials and methods -- 3.2.1 Configuration of WWTP Haarlem Waarderpolder -- 3.2.1.1 Conventional anoxic-aerobic activated sludge treatment -- 3.2.1.2 Phosphorus selection and precipitation line -- 3.2.1.3 Sludge treatment line -- 3.2.2 Influent characterization -- 3.2.3 Batch experiments -- 3.2.3.1 Anaerobic phosphorus release -- 3.2.3.2 Aerobic phosphorus uptake -- 3.2.3.3 Anoxic phosphorus uptake -- 3.2.3.4 Fraction of denitrifying activity of PAO -- 3.2.3.5 Nitrification -- 3.2.3.6 Denitrification -- 3.2.3.7 Endogenous phosphorus release -- 3.2.4 Sampling program and analytical methods -- 3.2.5 Modeling tools -- 3.2.6 Modeling strategy -- 3.3 Results -- 3.3.1 Sampling program -- 3.3.2 Influent and sludge characterization -- 3.3.3 Hydraulic set-up of the plant model -- 3.3.4 Model calibration -- 3.3.4.1 Calibration procedure -- 3.3.5 Model evaluation -- 3.3.5.1 Maximal anaerobic phosphate release -- 3.3.5.2 Aerobic and anoxic phosphate uptake -- 3.3.5.3 Nitrification -- 3.3.5.4 Denitrification -- 3.3.5.5 Endogenous phosphorus release -- 3.3.6 Alternative EBPR process configurations -- 3.3.6.1 Alternatives 1a and 1b: A/O system configuration -- 3.3.6.2 Alternatives 2a and 2b: modified UCT system configuration -- 3.3.6.3 Alternative 3a and 3b: BCFS system configuration -- 3.4 Discussion -- 3.4.1 Influent characterization -- 3.4.2 Model calibration -- 3.4.3 Operational aspects -- 3.4.4 Practical aspects -- 3.5 Conclusions -- Acknowledgements -- References -- Annex 3.1: Influent characterization procedure according to Dutch guidelines (STOWA, 1996) -- Annex 3.2: Results of the sampling program and data collected by the plant staff (April 1997).

Annex 3.3: Process configurations schemes of the WWTP Haarlem Waarderpolder -- Chapter 4: WWTP Katwoude, the Netherlands: Development of wastewater treatment data verification techniques -- 4.1 Introduction -- 4.2 WWTP Katwoude -- 4.2.1 Process description -- 4.2.2 Measurements -- 4.2.3 The process model -- 4.2.4 Introducing Macrobal -- 4.3 Error detection and data reconciliation -- 4.3.1 Estimation of the SRT -- 4.3.2 Balancing operational data -- 4.4 Model calibration and simulation -- 4.4.1 Fitting the sludge production -- 4.4.2 Calibrating nitrification, denitrification and EBPR -- 4.5. Discussion -- 4.5.1 Balancing conserved compounds -- 4.5.2 Calibrating EBPR -- 4.5.3 Calibrating N fractions -- 4.6 Conclusions -- References -- Chapter 5: WWTP Hardenberg, the Netherlands: Modelling full-scale start-up of the BCFS® process -- Part 1: Modelling regular operation of WWTP Hardenberg -- 5.1 Introduction -- 5.2 Materials and methods -- 5.2.1 WWTP Hardenberg -- 5.2.2 Measurements -- 5.2.3 The WWTP Hardenberg model -- 5.2.4 Model adjustments -- 5.2.5 Influent characterisation -- 5.3 Data evaluation -- 5.3.1 Initial simulation -- 5.3.2 Evaluation of the SRT -- 5.3.3 Evaluation of recycle flow A -- 5.3.4 Evaluation of recycle flow B -- 5.4 Model calibration -- 5.4.1 Simultaneous nitrification and denitrification -- 5.5 Discussion -- 5.5.1 Fitting models on faulty data -- 5.5.2 Sensitivity analysis -- 5.5.3 A heuristic calibration approach -- 5.5.4 The calibration procedure -- 5.5.5 Balancing solids -- 5.5.6 Calibrating KO -- 5.5.7 The COD and N balance -- 5.6 Conclusions on the modelling of regular plant operation -- Part 2: Modelling start-up of WWTP Hardenberg -- 5.7 Introduction -- 5.8 Materials and methods -- 5.8.1 The start-up procedure -- 5.8.2 Recording the original WWTP -- 5.8.3 Measuring the start-up -- 5.8.4 Models.

5.8.4.1 Model of the old WWTP -- 5.8.4.2 Model of the new WWTP -- 5.8.5 Solids retention in the anaerobic reactor -- 5.8.6 Modelling temperature -- 5.9 Model calibration and simulation -- 5.9.1 Data evaluation -- 5.9.2 Calibrating the model of the old WWTP -- 5.9.3 Calibrating the start-up -- 5.10 Evaluation of the TUDP model -- 5.10.1 Sensitivity analysis -- 5.10.2 Calibrating EBPR -- 5.11 Discussion -- 5.11.1 Influent characterisation -- 5.11.2 Simulation of the old WWTP -- 5.11.3 Modelling chemical P precipitation -- 5.11.4 Modelling anaerobic solids retention time -- 5.11.5 Dynamic evaluation of operational conditions -- 5.11.6 Interpretation of the start-up dynamics -- 5.11.6.1 Glycogen kinetics -- 5.11.6.2 Modelling a maximum glycogen fraction -- 5.11.6.3 Model sensitivity towards the maximum glycogen fraction -- 5.11.6.4 Temperature effects -- 5.12 Conclusions on start-up simulations -- References -- Chapter 6: WWTP Shell Godorf, Germany Optimization of oil refinery wastewater treatment -- 6.1 Introduction -- 6.2 Materials and Methods -- 6.2.1 Wastewater treatment plant configuration -- 6.2.2 Influent characterization -- 6.2.3 Sampling campaign -- 6.2.4 Experimental program -- 6.3 Modeling tools -- 6.4 Calibration strategy -- 6.5 Results -- 6.5.1 Influent characterization -- 6.5.2 Sampling campaign -- 6.6 Experimental campaign -- 6.5.1 Nitrification test -- 6.5.2 Denitrification test -- 6.5.3 Hydraulic set-up of the plant model -- 6.5.4 Model calibration and simulation -- 6.5.5 Model validation -- 6.5.6 Performance evaluation -- 6.6 Process optimization -- 6.6.1 Scenario 1: Implementation of an idle phase -- 6.6.2 Scenario 2: Transforming B3 basin from aerobic to anoxic -- 6.6.3 Scenario 3: Combined pre- and post-denitrification with external methanol addition -- 6.7 Discussion -- 6.8 Conclusions -- References.

Chapter 7: WWTP Walcheren, the Netherlands: Model-based evaluation of a novel upgrading concept for N removal -- 7.1 Introduction -- 7.2 Materials and methods -- 7.2.1 Walcheren wastewater treatment plant -- 7.2.2 Wastewater characterization -- 7.2.3 The BABE reactor -- 7.3 Results and discussion -- 7.3.1 Increasing the DO in the aeration tanks -- 7.3.2 Upgrading of the WWTP by the BABE concept -- 7.3.3 Modification of the WWTP Walcheren to meet the effluent requirements -- 7.3.4 Comparison of the upgrading strategies for the Walcheren WWTP -- 7.3.5 Use of modelling -- 7.4 Conclusions -- Acknowledgements -- References -- Chapter 8: WWTP Anjana, India: Coupling models for integrated and plant wide modelling -- 8.1 Introduction -- 8.2 Materials and methods -- 8.2.1 WWTP Anjana -- 8.2.2 Sampling program and analytical methods -- 8.2.3 Wastewater and sludge characterization -- 8.2.4 Model building and ASM3-ADM1 coupling -- 8.2.5 ADM1-ASM3 coupling -- 8.2.6 Modelling strategy -- 8.2.7 Model calibration and validation -- 8.2.8 Scenarios evaluation for process upgrade and optimization -- 8.3 Results -- 8.3.1 Model calibration -- 8.3.2 Model validation -- 8.3.3 Model-based evaluation for process optimization and upgrade -- 8.3.4 Modelling the return of the filtrate stream -- 8.4 Discussion -- 8.4.1 Influent and sludge characterization -- 8.4.2 Model calibration -- 8.4.3 Model coupling -- 8.4.4 Plant performance assessment for current and future scenarios -- 8.5 Conclusions -- Acknowledgements -- References -- Chapter 9: WWTP Ecco, the Netherlands: Modelling nitrogen removal from tannery wastewater -- 9.1 Introduction -- 9.2 Materials and methods -- 9.2.1 Plant and process description -- 9.2 Measurements -- 9.3 Process model (selection and adjustment) -- 9.4 Influent measurement and characterization -- 9.5 Balancing operational data and measurements.

9.5.1 Estimation of sludge age, Q recycling and Qin2.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.