Impacts of Shallow Geothermal Energy on Groundwater Quality.
Material type:
- text
- computer
- online resource
- 9781780406824
- 628.114
- TD403 -- .B668 2015eb
Cover -- Copyright -- Contents -- Chapter 1: Introduction -- 1.1 Background -- 1.2 Shallow Geothermal Energy, Subsurface Use and Drinking Water Production -- 1.3 Research Objective and Questions -- 1.4 Methodology and Outline -- Chapter 2: Shallow geothermal energy: A review of impacts on groundwater quality and policy in the Netherlands and European Union -- 2.1 Introduction -- 2.2 A Review on the Potential Impacts of SGE on Groundwater Quality -- 2.2.1 Hydrological impacts -- 2.2.2 Thermal impacts -- 2.2.3 Chemical impacts in clean groundwater systems -- 2.2.4 Chemical impacts in contaminated groundwater systems -- 2.2.5 Chemical impacts of BTES systems -- 2.2.6 Microbiological Impacts -- 2.3 Past and Current Policy for SGE -- 2.3.1 SGE policy in the Netherlands prior to July 2013 -- 2.3.2 SGE policy in the Netherlands after July 2013 -- 2.3.3 Policies of European member states on SGE -- 2.4 Discussion: Subsurface Technology Development and Regulation -- 2.5 Conclusions -- Chapter 3: A field and modeling study of the impacts of aquifer thermal energy storage on groundwater quality -- 3.1 Introduction -- 3.2 Site Description -- 3.3 Methods -- 3.3.1 Field and laboratory methods -- 3.3.2 Numerical modeling of the field data -- 3.4 Results -- 3.4.1 Flow and temperature data -- 3.4.2 Ambient chemical groundwater quality -- 3.4.3 ATES chemical water quality -- 3.4.4 ATES microbiological water quality -- 3.4.5 Numerical modeling of field data -- 3.5 Discussion -- 3.6 Conclusions -- Chapter 4: Temperature-induced impacts on mobility of arsenic and other trace elements -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Sediment collection, characterization, and geochemical analyses -- 4.2.2 Influent water collection and characterization -- 4.2.3 Experimental setup -- 4.2.4 Hydrochemical analyses -- 4.2.5 Data analysis.
4.2.6 Arsenic sorption isotherms -- 4.2.7 Sorption thermodynamics -- 4.3 Results and Discussion -- 4.3.1 General patterns -- 4.3.2 Silicate minerals dissolution -- 4.3.3 Dissolved organic carbon mobilization -- 4.3.4 Mobilization of arsenic and other trace compounds -- 4.3.5 Arsenic sorption isotherms -- 4.3.6 Temperature influence -- 4.3.7 Environmental implications -- 4.4 Conclusions -- Chapter 5: Temperature-induced impacts on redox processes and microbial communities -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 Sediment and groundwater collection -- 5.2.2 Experimental setup -- 5.2.3 Chemical and microbiological analyses -- 5.2.4 Deriving kinetic and thermodynamic parameters -- 5.3 Results -- 5.3.1 Increasing residence time (IRT) experiments -- 5.3.2 Temperature ramping (TR) experiments -- 5.3.3 Microbial community changes -- 5.3.4 Kinetics and thermodynamics of sulfate-reduction -- 5.4 Discussion -- 5.4.1 Impact of temperature on prevailing redox reactions -- 5.4.2 Thermophilic redox processes and microbial communities -- 5.4.3 Accumulation of dissolved organic carbon (DOC) and organic carbon turnover -- 5.4.4 Sulfate-reduction kinetics and thermodynamics -- 5.5 Environmental and Technological Implications -- Chapter 6: Reactive transport modeling of thermal column experiments to investigate the impacts of aquifer thermal energy storage on groundwater quality -- 6.1 Introduction -- 6.2 Experimental Methods -- 6.3 Modeling Framework -- 6.3.1 Modeling framework, boundary, and initial conditions -- 6.3.2 Heat boundary conditions and transport -- 6.3.3 Temperature correction for mineral equilibria and reaction rates -- 6.3.4 Surface complexation modeling -- 6.3.5 Cation-exchange -- 6.3.6 Kinetic dissolution of K-feldspar -- 6.3.7 Mineral interactions in thermodynamic equilibrium.
6.3.8 Automatic model optimization, sensitivity and uncertainty analysis -- 6.4 Results and Discussion -- 6.4.1 Surface complexation modeling results -- 6.4.2 Contrasting sorption behavior anions versus cations -- 6.4.3 Application to a virtual aquifer thermal energy storage system -- 6.4.4 Limitations and environmental implications -- 6.5 Acknowledgment -- Chapter 7: Summary and synthesis -- 7.1 Introduction -- 7.2 Summary of Research -- 7.2.1 Chapter 2: Shallow geothermal energy: A review of impacts on groundwater quality and policy in the Netherlands and European Union -- 7.2.2 Chapter 3: A field and modeling study of the impacts of aquifer thermal energy storage on groundwater quality -- 7.2.3 Chapter 4: Temperature-induced impacts on mobility of arsenic and other trace elements -- 7.2.4 Chapter 5: Temperature-induced impacts on redox processes and microbial communities -- 7.2.5 Chapter 6: Reactive transport modeling of thermal column experiments to investigate the impacts of aquifer thermal energy storage on groundwater quality -- 7.3 Translating Hydrochemical Effects to Impacts on Drinking Water Production -- 7.4 Groundwater Quality Monitoring Near SGE Systems -- 7.5 Policy Perspectives -- 7.6 Research Perspectives -- References -- Appendix 1: Supporting information -- Appendix 2: Supporting information -- S2.1 Experimental Details -- S2.2 Methods: Microbiological Analyses -- S2.2.1 DNA Extraction -- S2.2.2 T-RFLP fingerprinting of bacterial communities -- S2.2.3 Amplicon preparation and pyrosequencing of bacterial 16S rRNA genes -- S2.2.4 Denaturing gradient gel electrophoresis (DGGE) of archaeal communities -- S2.3 Hydrogen Thresholds for Redox Processes -- S2.4 Microbiological Results -- S2.5 Kinetic and Thermodynamic Parameters of Sulfate Reduction Reported in Literature -- Appendix 3: Supplementary information -- S3.1 Methods.
S3.1.1 Sediment sampling and characterization -- S3.1.2 Experimental setup -- S3.1.3 Chemical analyses -- S3.2 Analysis of Conservative Breakthrough Tests -- S3.3 Additional Information on Simulated Cation Exchange -- S3.4 Additional Information on the Kinetic Dissolution of K-Feldspar -- S3.5 Additional Information on the Methodology for Sensitivity and Uncertainty Analysis -- S3.6 Additional Results -- S3.6.1 Surface complexation -- S3.6.2 K-feldspar dissolution and cation exchange -- S3.7 Other Information -- S3.8 Additional Simulation Results of the Aquifer Thermal Energy Storage Scenario Case Studies.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
There are no comments on this title.