ORPP logo
Image from Google Jackets

Nanotechnology for Water and Wastewater Treatment.

By: Contributor(s): Material type: TextTextSeries: Integrated Environmental Technology SeriesPublisher: London : IWA Publishing, 2013Copyright date: ©2013Edition: 1st edDescription: 1 online resource (458 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781780404592
Subject(s): Genre/Form: Additional physical formats: Print version:: Nanotechnology for Water and Wastewater TreatmentDDC classification:
  • 628.3
LOC classification:
  • TD477.N36 2013
Online resources:
Contents:
Cover -- Copyright -- Contents -- Preface -- List of Contributors -- Chapter 1: Nanotechnology for water and wastewater treatment: potentials and limitations -- 1.1 Introduction to Nanoscience and Nanotechnology -- 1.2 Nanotechnology for Water and Wastewater Treatment -- 1.3 Overview of Existing Applications and Current Trends -- 1.3.1 New materials for membrane filtration -- 1.3.2 Nanomaterials for catalysis and photocatalysis -- 1.3.3 Nanomaterials for water disinfection -- 1.3.4 Nanomaterials for pollutant adsorption -- 1.3.4.1 Carbon based nanomaterials -- 1.3.4.2 Metal based nanomaterials -- 1.3.5 Nanoscale zero-valent iron -- 1.4 Practical Aspects -- 1.4.1 Technical developments for direct applications of nanoparticles in water treatment -- 1.4.2 Costs and performance -- 1.4.3 Toxicity, fate and transport of nanomaterials -- 1.5 Concluding Remarks -- References -- Chapter 2: Environmental and human health effects of nanomaterials used in water and waste water treatment -- 2.1 Introduction -- 2.2 Effects of Manufactured Nanomaterials on Human Health and the Environment -- 2.2.1 Human health -- 2.2.1.1 Carbon based nanomaterials -- 2.2.1.2 Metal based nanomaterials -- 2.2.2 Ecotoxicological effects -- 2.2.2.1 Aquatic ecotoxicology -- 2.2.2.1.1 Carbon based nanomaterials -- 2.2.2.1.2 Metal based nanomaterials -- 2.2.2.2 Terrestrial ecotoxicology -- 2.2.2.2.1 Soil microorganisms -- 2.2.2.2.2 Soil invertebrates -- 2.2.2.2.3 Plants -- 2.3 Conclusion -- References -- Chapter 3: Life cycle assessment of nanomaterials: towards green nanotechnology -- 3.1 Introduction -- 3.2 Life Cycle Assessment (LCA) -- 3.2.1 What is LCA? -- 3.2.2 Benefit of LCA -- 3.2.3 ISO14040 series -- 3.2.4 General limitation of LCA -- 3.3 LCA for Nanotechnology -- 3.3.1 Nanotechnology and LCA.
3.3.2 Challenges, limitations and obstacles specific to nanotechnology (Kloepffer et al., 2007) -- 3.4 Water Research &amp -- LCA of Nanomaterials -- 3.5 Overview of Case Studies -- 3.6 New Approaches to the LCA of Nanomaterials -- 3.7 Suggested Improvement -- 3.8 International Efforts -- 3.9 Conclusions -- Glossary -- References -- Chapter 4: Physical and chemical analysis of nanoparticles -- 4.1 Introduction -- 4.2 Sample Preparation - Prefractionation -- 4.2.1 Filtration -- 4.2.2 Centrifugal-sedimentation techniques -- 4.3 Methods for Determining Bulk Particle Concentration -- 4.4 Physical Characterization -- 4.4.1 Separation techniques -- 4.4.1.1 Size exclusion chromatography -- 4.4.1.2 Capillary electrophoresis -- 4.4.1.3 Hydrodynamic chromatography -- 4.4.1.4 Field flow fractionation -- 4.4.2 Methods for assessing the shape, size distribution and surface structure of nanoparticles -- 4.4.2.1 Scanning electron microscopy -- 4.4.2.2 Transmission electron microscopy -- 4.4.2.3 Atomic force microscopy -- 4.4.2.4 Dynamic light scattering -- 4.4.3 Methods for assessing the surface charge (Zeta potential) of nanoparticles -- 4.4.4 Optical properties of nanoparticles -- 4.4.4.1 UV-VIS spectrometry -- 4.4.4.2 Near-field scanning optical microscopy -- 4.5 Chemical Characterization -- 4.5.1 Methods for measuring the elemental composition of single nanoparticles -- 4.5.1.1 Energy dispersive X-ray spectroscopy -- 4.5.1.2 Electron energy loss spectrometry -- 4.5.1.3 X-ray diffraction -- 4.5.1.4 X-ray absorption spectroscopy -- 4.5.1.5 Vibrational spectroscopy -- 4.5.2 Methods for measuring the elemental composition of bulk nanoparticles -- 4.5.2.1 Inductively coupled plasma spectrometry -- 4.5.2.2 X-ray photoelectron spectroscopy -- 4.6 Summary -- References -- Chapter 5: Mobility, fate and toxicity of nanomaterials/nanoparticles in water and wastewater.
5.1 Introduction -- 5.2 Release of Nanomaterials/Nanoparticles into the Environment -- 5.3 Properties and Characterization of Nanomaterials/Nanoparticles -- 5.3.1 Properties -- 5.3.2 Ananlysis and characterization of nanoparticles -- 5.4 Fate of Nanomaterials/Nanoparticles in Water and Wastewater -- 5.4.1 Fate in aqueous environment -- 5.4.1.1 Processes determining the fate of NMs/NPs -- 5.4.1.2 Effect of NM/NP characteristics -- 5.4.2 Fate in water treatment processes -- 5.4.3 Fate in wastewater treatment processes -- 5.4.3.1 Preliminary treatment -- 5.4.3.2 Primary treatment -- 5.4.3.3 Secondary treatment -- 5.4.3.4 Tertiary treatment/membrane filtration -- 5.5 Toxicity and Implications -- 5.6 Conclusions -- References -- Chapter 6: Effective phosphate removal using Ca-based layered double hydroxide nanomaterials -- 6.1 Layered Double Hydroxide -- 6.1.1 Introduction -- 6.1.2 Composition variability -- 6.1.3 Structure features -- 6.2 Removal of Phosphates by LDH -- 6.2.1 Inorganic phosphate speciation -- 6.2.2 Removal isotherms -- 6.2.3 Removal kinetics -- 6.2.4 Effect of absorbent composition -- 6.2.5 Effect of the phosphate concentration -- 6.3 Removal Mechanism -- 6.3.1 Ion concentrations in treated solutions and Ca/P ratio in the collected solids -- 6.3.2 Formation of Ca-P precipitate -- 6.3.3 Dissolution-precipitation processes -- 6.4 Concluding Remarks and Perspectives -- References -- Chapter 7: Recycling Mg(OH)2 nanoadsorbents during the removal of heavy metals from wastewater using Cr(VI) as an example -- 7.1 Introduction -- 7.1.1 Environmental applications of Mg(OH)2 -- 7.1.2 The risks of Cr(VI) and treatment of Cr(VI)-containing wastewater -- 7.1.2.1 Cr removal technologies -- 7.1.2.2 Cr adsorption technologies -- 7.1.3 Recycling nanoadsorbents and the pre-concentration of heavy metals.
7.2 Recycling Mg(OH)2 Nano Adsorbent During Treatment of Low Concentration of Cr(VI) -- 7.2.1 Adsorption of Cr(VI) onto Mg(OH)2 nanoparticles -- 7.2.2 Desorption and enrichment of Cr(VI) -- 7.2.3 Recycle loop of the Mg(OH)2 nanoadsorbent -- 7.3 Treatment of Cr(VI)-Containing Mg(OH)2 Nanowaste -- 7.3.1 Cr(VI)-containing Mg(OH)2 nanowaste generated by the chlorate industry -- 7.3.2 Treatment of Mg(OH)2 nanowaste by mineralizer -- 7.3.3 Pilotscale treatment of nanowaste in chlorate plant -- 7.4 Conclusions -- References -- Chapter 8: Visible-light active doped titania for water purification: nitrogen and silver doping -- 8.1 Introduction -- 8.2 Overview of Visible Light Activity by Doping TiO2 -- 8.2.1 Nitrogen doping -- 8.2.2 Silver doping -- 8.3 Doped TiO2 and Water Reclamation -- 8.3.1 Nitrogen-doped TiO2 -- 8.3.1.1 Photodegradation of dyes -- 8.3.1.2 Phenolic compounds -- 8.3.1.3 Other organic water contaminants -- 8.3.2 Silver-doped TiO2 -- 8.3.2.1 Photodegradation of dyes -- 8.3.2.2 Other prominent water contaminants -- 8.4 Co-Doping with Metal/Non-metal -- 8.5 Summary -- Acknowledgements -- References -- Chapter 9: Pd nanocatalysts for PCB removal -- 9.1 Introduction -- 9.2 Remediation of PCBs from the environment -- 9.3 Dehalogenation Reactions by Palladium (NANO-)Catalysis -- 9.3.1 Production and supports for Pd nanoparticles -- 9.3.2 Hydrogen donors for dehalogenation reactions -- 9.3.3 Reaction kinetics and selectivity -- 9.3.4 Solvents and additives in Pd catalysis -- 9.4 PCB Degradation by Bimetallic Pd Catalysts -- 9.5 Applications of Pd Nanoparticles for PCB Treatment -- 9.5.1 Treatment of PCBs spread in the environment -- 9.5.2 Treatment of PCB containing sources -- 9.6 Conclusions and Perspectives -- References -- Chapter 10: Activated carbon-supported palladized iron nanoparticles: applications to contaminated site remediation.
10.1 Introduction -- 10.1.1 Physical capping approaches -- 10.1.2 Chemical dechlorination approaches -- 10.1.3 Concept of reactive activated carbon (RAC) -- 10.2 Synthesis of Reactive Activated Carbon -- 10.2.1 Impregnation of GAC with Fe/Pd particles -- 10.2.2 Physical and chemical properties of RAC -- 10.2.3 Control of Fe and Pd contents -- 10.3 Working Mechanisms of RAC -- 10.3.1 Adsorption and dechlorination of PCBs -- 10.3.2 Catalytic role of palladium -- 10.3.3 Dependency of RAC performance on pH -- 10.4 Treatment Capacity and Longevity -- 10.4.1 Dechlorination capacity -- 10.4.2 Short term treatability -- 10.4.3 Long term ageing and oxidation -- 10.5 Reactvitiy of RAC with PCBs -- 10.5.1 Mono PCB congeners -- 10.5.2 Tri-chlorinated biphenyl -- 10.5.3 Higher PCB congeners -- 10.6 Application Prospects -- 10.6.1 Reactive capping barrier concept -- 10.6.2 Challenges -- 10.6.3 Applications -- Acknowledgement -- References -- Chapter 11: Microbial manufactured silver nanoparticles for water disinfection -- 11.1 Introduction -- 11.2 The Microbial Production of Silver Nanoparticles -- 11.2.1 The basic principles -- 11.2.2 Reduction mechanism -- 11.2.2.1 Enzymatic reduction -- 11.2.2.2 Non-enzymatic reduction -- 11.2.3 The use of entire cells vs. cell extracts -- 11.3 Applications of Microbial Manufactured Silver Nanoparticles -- 11.3.1 Antimicrobial activity -- 11.3.1.1 General introduction on antimicrobial activity -- 11.3.1.2 Quantification of antimicrobial activity -- 11.3.1.3 Antimicrobial mechanism of microbial manufactured nanoparticles -- 11.3.1.4 Microbial vs. chemical manufactured nanosilver -- 11.3.2 Microbial manufactured silver nanoparticles for water disinfection -- 11.3.3 Other applications of microbial manufactured silver nanoparticles -- 11.3.4 Silver nanoparticle toxicity.
11.3.5 Fate of microbial manufactured silver nanoparticles: legislation and regulation.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Cover -- Copyright -- Contents -- Preface -- List of Contributors -- Chapter 1: Nanotechnology for water and wastewater treatment: potentials and limitations -- 1.1 Introduction to Nanoscience and Nanotechnology -- 1.2 Nanotechnology for Water and Wastewater Treatment -- 1.3 Overview of Existing Applications and Current Trends -- 1.3.1 New materials for membrane filtration -- 1.3.2 Nanomaterials for catalysis and photocatalysis -- 1.3.3 Nanomaterials for water disinfection -- 1.3.4 Nanomaterials for pollutant adsorption -- 1.3.4.1 Carbon based nanomaterials -- 1.3.4.2 Metal based nanomaterials -- 1.3.5 Nanoscale zero-valent iron -- 1.4 Practical Aspects -- 1.4.1 Technical developments for direct applications of nanoparticles in water treatment -- 1.4.2 Costs and performance -- 1.4.3 Toxicity, fate and transport of nanomaterials -- 1.5 Concluding Remarks -- References -- Chapter 2: Environmental and human health effects of nanomaterials used in water and waste water treatment -- 2.1 Introduction -- 2.2 Effects of Manufactured Nanomaterials on Human Health and the Environment -- 2.2.1 Human health -- 2.2.1.1 Carbon based nanomaterials -- 2.2.1.2 Metal based nanomaterials -- 2.2.2 Ecotoxicological effects -- 2.2.2.1 Aquatic ecotoxicology -- 2.2.2.1.1 Carbon based nanomaterials -- 2.2.2.1.2 Metal based nanomaterials -- 2.2.2.2 Terrestrial ecotoxicology -- 2.2.2.2.1 Soil microorganisms -- 2.2.2.2.2 Soil invertebrates -- 2.2.2.2.3 Plants -- 2.3 Conclusion -- References -- Chapter 3: Life cycle assessment of nanomaterials: towards green nanotechnology -- 3.1 Introduction -- 3.2 Life Cycle Assessment (LCA) -- 3.2.1 What is LCA? -- 3.2.2 Benefit of LCA -- 3.2.3 ISO14040 series -- 3.2.4 General limitation of LCA -- 3.3 LCA for Nanotechnology -- 3.3.1 Nanotechnology and LCA.

3.3.2 Challenges, limitations and obstacles specific to nanotechnology (Kloepffer et al., 2007) -- 3.4 Water Research &amp -- LCA of Nanomaterials -- 3.5 Overview of Case Studies -- 3.6 New Approaches to the LCA of Nanomaterials -- 3.7 Suggested Improvement -- 3.8 International Efforts -- 3.9 Conclusions -- Glossary -- References -- Chapter 4: Physical and chemical analysis of nanoparticles -- 4.1 Introduction -- 4.2 Sample Preparation - Prefractionation -- 4.2.1 Filtration -- 4.2.2 Centrifugal-sedimentation techniques -- 4.3 Methods for Determining Bulk Particle Concentration -- 4.4 Physical Characterization -- 4.4.1 Separation techniques -- 4.4.1.1 Size exclusion chromatography -- 4.4.1.2 Capillary electrophoresis -- 4.4.1.3 Hydrodynamic chromatography -- 4.4.1.4 Field flow fractionation -- 4.4.2 Methods for assessing the shape, size distribution and surface structure of nanoparticles -- 4.4.2.1 Scanning electron microscopy -- 4.4.2.2 Transmission electron microscopy -- 4.4.2.3 Atomic force microscopy -- 4.4.2.4 Dynamic light scattering -- 4.4.3 Methods for assessing the surface charge (Zeta potential) of nanoparticles -- 4.4.4 Optical properties of nanoparticles -- 4.4.4.1 UV-VIS spectrometry -- 4.4.4.2 Near-field scanning optical microscopy -- 4.5 Chemical Characterization -- 4.5.1 Methods for measuring the elemental composition of single nanoparticles -- 4.5.1.1 Energy dispersive X-ray spectroscopy -- 4.5.1.2 Electron energy loss spectrometry -- 4.5.1.3 X-ray diffraction -- 4.5.1.4 X-ray absorption spectroscopy -- 4.5.1.5 Vibrational spectroscopy -- 4.5.2 Methods for measuring the elemental composition of bulk nanoparticles -- 4.5.2.1 Inductively coupled plasma spectrometry -- 4.5.2.2 X-ray photoelectron spectroscopy -- 4.6 Summary -- References -- Chapter 5: Mobility, fate and toxicity of nanomaterials/nanoparticles in water and wastewater.

5.1 Introduction -- 5.2 Release of Nanomaterials/Nanoparticles into the Environment -- 5.3 Properties and Characterization of Nanomaterials/Nanoparticles -- 5.3.1 Properties -- 5.3.2 Ananlysis and characterization of nanoparticles -- 5.4 Fate of Nanomaterials/Nanoparticles in Water and Wastewater -- 5.4.1 Fate in aqueous environment -- 5.4.1.1 Processes determining the fate of NMs/NPs -- 5.4.1.2 Effect of NM/NP characteristics -- 5.4.2 Fate in water treatment processes -- 5.4.3 Fate in wastewater treatment processes -- 5.4.3.1 Preliminary treatment -- 5.4.3.2 Primary treatment -- 5.4.3.3 Secondary treatment -- 5.4.3.4 Tertiary treatment/membrane filtration -- 5.5 Toxicity and Implications -- 5.6 Conclusions -- References -- Chapter 6: Effective phosphate removal using Ca-based layered double hydroxide nanomaterials -- 6.1 Layered Double Hydroxide -- 6.1.1 Introduction -- 6.1.2 Composition variability -- 6.1.3 Structure features -- 6.2 Removal of Phosphates by LDH -- 6.2.1 Inorganic phosphate speciation -- 6.2.2 Removal isotherms -- 6.2.3 Removal kinetics -- 6.2.4 Effect of absorbent composition -- 6.2.5 Effect of the phosphate concentration -- 6.3 Removal Mechanism -- 6.3.1 Ion concentrations in treated solutions and Ca/P ratio in the collected solids -- 6.3.2 Formation of Ca-P precipitate -- 6.3.3 Dissolution-precipitation processes -- 6.4 Concluding Remarks and Perspectives -- References -- Chapter 7: Recycling Mg(OH)2 nanoadsorbents during the removal of heavy metals from wastewater using Cr(VI) as an example -- 7.1 Introduction -- 7.1.1 Environmental applications of Mg(OH)2 -- 7.1.2 The risks of Cr(VI) and treatment of Cr(VI)-containing wastewater -- 7.1.2.1 Cr removal technologies -- 7.1.2.2 Cr adsorption technologies -- 7.1.3 Recycling nanoadsorbents and the pre-concentration of heavy metals.

7.2 Recycling Mg(OH)2 Nano Adsorbent During Treatment of Low Concentration of Cr(VI) -- 7.2.1 Adsorption of Cr(VI) onto Mg(OH)2 nanoparticles -- 7.2.2 Desorption and enrichment of Cr(VI) -- 7.2.3 Recycle loop of the Mg(OH)2 nanoadsorbent -- 7.3 Treatment of Cr(VI)-Containing Mg(OH)2 Nanowaste -- 7.3.1 Cr(VI)-containing Mg(OH)2 nanowaste generated by the chlorate industry -- 7.3.2 Treatment of Mg(OH)2 nanowaste by mineralizer -- 7.3.3 Pilotscale treatment of nanowaste in chlorate plant -- 7.4 Conclusions -- References -- Chapter 8: Visible-light active doped titania for water purification: nitrogen and silver doping -- 8.1 Introduction -- 8.2 Overview of Visible Light Activity by Doping TiO2 -- 8.2.1 Nitrogen doping -- 8.2.2 Silver doping -- 8.3 Doped TiO2 and Water Reclamation -- 8.3.1 Nitrogen-doped TiO2 -- 8.3.1.1 Photodegradation of dyes -- 8.3.1.2 Phenolic compounds -- 8.3.1.3 Other organic water contaminants -- 8.3.2 Silver-doped TiO2 -- 8.3.2.1 Photodegradation of dyes -- 8.3.2.2 Other prominent water contaminants -- 8.4 Co-Doping with Metal/Non-metal -- 8.5 Summary -- Acknowledgements -- References -- Chapter 9: Pd nanocatalysts for PCB removal -- 9.1 Introduction -- 9.2 Remediation of PCBs from the environment -- 9.3 Dehalogenation Reactions by Palladium (NANO-)Catalysis -- 9.3.1 Production and supports for Pd nanoparticles -- 9.3.2 Hydrogen donors for dehalogenation reactions -- 9.3.3 Reaction kinetics and selectivity -- 9.3.4 Solvents and additives in Pd catalysis -- 9.4 PCB Degradation by Bimetallic Pd Catalysts -- 9.5 Applications of Pd Nanoparticles for PCB Treatment -- 9.5.1 Treatment of PCBs spread in the environment -- 9.5.2 Treatment of PCB containing sources -- 9.6 Conclusions and Perspectives -- References -- Chapter 10: Activated carbon-supported palladized iron nanoparticles: applications to contaminated site remediation.

10.1 Introduction -- 10.1.1 Physical capping approaches -- 10.1.2 Chemical dechlorination approaches -- 10.1.3 Concept of reactive activated carbon (RAC) -- 10.2 Synthesis of Reactive Activated Carbon -- 10.2.1 Impregnation of GAC with Fe/Pd particles -- 10.2.2 Physical and chemical properties of RAC -- 10.2.3 Control of Fe and Pd contents -- 10.3 Working Mechanisms of RAC -- 10.3.1 Adsorption and dechlorination of PCBs -- 10.3.2 Catalytic role of palladium -- 10.3.3 Dependency of RAC performance on pH -- 10.4 Treatment Capacity and Longevity -- 10.4.1 Dechlorination capacity -- 10.4.2 Short term treatability -- 10.4.3 Long term ageing and oxidation -- 10.5 Reactvitiy of RAC with PCBs -- 10.5.1 Mono PCB congeners -- 10.5.2 Tri-chlorinated biphenyl -- 10.5.3 Higher PCB congeners -- 10.6 Application Prospects -- 10.6.1 Reactive capping barrier concept -- 10.6.2 Challenges -- 10.6.3 Applications -- Acknowledgement -- References -- Chapter 11: Microbial manufactured silver nanoparticles for water disinfection -- 11.1 Introduction -- 11.2 The Microbial Production of Silver Nanoparticles -- 11.2.1 The basic principles -- 11.2.2 Reduction mechanism -- 11.2.2.1 Enzymatic reduction -- 11.2.2.2 Non-enzymatic reduction -- 11.2.3 The use of entire cells vs. cell extracts -- 11.3 Applications of Microbial Manufactured Silver Nanoparticles -- 11.3.1 Antimicrobial activity -- 11.3.1.1 General introduction on antimicrobial activity -- 11.3.1.2 Quantification of antimicrobial activity -- 11.3.1.3 Antimicrobial mechanism of microbial manufactured nanoparticles -- 11.3.1.4 Microbial vs. chemical manufactured nanosilver -- 11.3.2 Microbial manufactured silver nanoparticles for water disinfection -- 11.3.3 Other applications of microbial manufactured silver nanoparticles -- 11.3.4 Silver nanoparticle toxicity.

11.3.5 Fate of microbial manufactured silver nanoparticles: legislation and regulation.

Description based on publisher supplied metadata and other sources.

Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.

There are no comments on this title.

to post a comment.

© 2024 Resource Centre. All rights reserved.